diff options
author | Mattias Andrée <maandree@operamail.com> | 2013-02-04 04:19:22 +0100 |
---|---|---|
committer | Mattias Andrée <maandree@operamail.com> | 2013-02-04 04:19:22 +0100 |
commit | ff90defe010e01862bea0251ce6eff688f7aee7d (patch) | |
tree | 9e84409f922ab4ac20b1678947e1cdb75a6e20a6 /SHA3.java | |
parent | add gitignore (diff) | |
download | sha3sum-ff90defe010e01862bea0251ce6eff688f7aee7d.tar.gz sha3sum-ff90defe010e01862bea0251ce6eff688f7aee7d.tar.bz2 sha3sum-ff90defe010e01862bea0251ce6eff688f7aee7d.tar.xz |
m + work on java implementation
Signed-off-by: Mattias Andrée <maandree@operamail.com>
Diffstat (limited to '')
-rw-r--r-- | SHA3.java | 585 |
1 files changed, 585 insertions, 0 deletions
diff --git a/SHA3.java b/SHA3.java new file mode 100644 index 0000000..49394bf --- /dev/null +++ b/SHA3.java @@ -0,0 +1,585 @@ +/** + * sha3sum – SHA-3 (Keccak) checksum calculator + * + * Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + + +/** + * SHA-3/Keccak hash algorithm implementation + * + * @author Mattias Andrée <a href="mailto:maandree@member.fsf.org">maandree@member.fsf.org</a> + */ +public class SHA3 +{ + /** + * Round contants + */ + private static final long[] RC = { + 0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L, + 0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L, + 0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL, + 0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L, + 0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL, + 0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L}; + + /** + * Keccak-f round temporary + */ + private static long[] B = new long[25]; + + /** + * Keccak-f round temporary + */ + private static long[] C = new long[5]; + + + /** + * The bitrate + */ + private static long r = 0; + + /** + * The capacity + */ + private static long c = 0; + + /** + * The output size + */ + private static long n = 0; + + /** + * The state size + */ + private static long b = 0; + + /** + * The word size + */ + private static long w = 0; + + /** + * The word mask + */ + private static long wmod = 0; + + /** + * ℓ, the binary logarithm of the word size + */ + private static long l = 0; + + /** + * 12 + 2ℓ, the number of rounds + */ + private static long nr = 0; + + + /** + * The current state + */ + private static long[] S = null; + + /** + * Left over water to fill the sponge with at next update + */ + private static byte[] M = null; + + + + /** + * Hidden constructor + */ + private SHA3() + { + // Inhibit instansiation + } + + + + /** + * Rotate a word + * + * @param x The value to rotate + * @param n Rotation steps + * @return The value rotated + */ + private static long rotate(long x, long n) + { + long m = n % SHA3.w + return (x >>> (SHA3.w - m)) + (x << m); + } + + + /** + * Rotate a 64-bit word + * + * @param x The value to rotate + * @param n Rotation steps + * @return The value rotated + */ + private static long rotate(long x, long n) + { + return (x >> (SHA3.w - n)) + (x << n); + } + + + /** + * Binary logarithm + * + * @param x The value of which to calculate the binary logarithm + * @return The binary logarithm + */ + private static long lb(long x) + { + return (((x & 0xFF00) == 0 ? 0 : 8) + + ((x & 0xF0F0) == 0 ? 0 : 4)) + + (((x & 0xCCCC) == 0 ? 0 : 2) + + ((x & 0xAAAA) == 0 ? 0 : 1)); + } + + /** + * Perform one round of computation + * + * @param A The current state + * @param rc Round constant + */ + private static void keccakFRound(long[] A, long rc) + { + if (SHA3.w == 64) + { + /* θ step (step 1 and 2 of 3) */ + SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4]; + SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14]; + long db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1); + SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24]; + long dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1); + SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9]; + long da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1); + SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19]; + long dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1); + long de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1); + + /* ρ and π steps, with last part of θ */ + SHA3.B[0] = SHA3.rotate64(A[0] ^ da, 0); + SHA3.B[1] = SHA3.rotate64(A[15] ^ dd, 28); + SHA3.B[2] = SHA3.rotate64(A[5] ^ db, 1); + SHA3.B[3] = SHA3.rotate64(A[20] ^ de, 27); + SHA3.B[4] = SHA3.rotate64(A[10] ^ dc, 62); + + SHA3.B[5] = SHA3.rotate64(A[6] ^ db, 44); + SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20); + SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6); + SHA3.B[8] = SHA3.rotate64(A[1] ^ da, 36); + SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55); + + SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43); + SHA3.B[11] = SHA3.rotate64(A[2] ^ da, 3); + SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25); + SHA3.B[13] = SHA3.rotate64(A[7] ^ db, 10); + SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39); + + SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21); + SHA3.B[16] = SHA3.rotate64(A[8] ^ db, 45); + SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8); + SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15); + SHA3.B[19] = SHA3.rotate64(A[3] ^ da, 41); + + SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14); + SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61); + SHA3.B[22] = SHA3.rotate64(A[4] ^ da, 18); + SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56); + SHA3.B[24] = SHA3.rotate64(A[9] ^ db, 2); + } + else + { + /* θ step (step 1 and 2 of 3) */ + SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4]; + SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14]; + long db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1); + SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24]; + long dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1); + SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9]; + long da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1); + SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19]; + long dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1); + long de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1); + + /*ρ and π steps, with last part of θ */ + SHA3.B[0] = SHA3.rotate(A[0] ^ da, 0); + SHA3.B[1] = SHA3.rotate(A[15] ^ dd, 28); + SHA3.B[2] = SHA3.rotate(A[5] ^ db, 1); + SHA3.B[3] = SHA3.rotate(A[20] ^ de, 27); + SHA3.B[4] = SHA3.rotate(A[10] ^ dc, 62); + + SHA3.B[5] = SHA3.rotate(A[6] ^ db, 44); + SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20); + SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6); + SHA3.B[8] = SHA3.rotate(A[1] ^ da, 36); + SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55); + + SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43); + SHA3.B[11] = SHA3.rotate(A[2] ^ da, 3); + SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25); + SHA3.B[13] = SHA3.rotate(A[7] ^ db, 10); + SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39); + + SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21); + SHA3.B[16] = SHA3.rotate(A[8] ^ db, 45); + SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8); + SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15); + SHA3.B[19] = SHA3.rotate(A[3] ^ da, 41); + + SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14); + SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61); + SHA3.B[22] = SHA3.rotate(A[4] ^ da, 18); + SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56); + SHA3.B[24] = SHA3.rotate(A[9] ^ db, 2); + } + + /* ξ step */ + A[0] = SHA3.B[0] ^ ((~(SHA3.B[5])) & SHA3.B[10]); + A[1] = SHA3.B[1] ^ ((~(SHA3.B[6])) & SHA3.B[11]); + A[2] = SHA3.B[2] ^ ((~(SHA3.B[7])) & SHA3.B[12]); + A[3] = SHA3.B[3] ^ ((~(SHA3.B[8])) & SHA3.B[13]); + A[4] = SHA3.B[4] ^ ((~(SHA3.B[9])) & SHA3.B[14]); + + A[5] = SHA3.B[5] ^ ((~(SHA3.B[10])) & SHA3.B[15]); + A[6] = SHA3.B[6] ^ ((~(SHA3.B[11])) & SHA3.B[16]); + A[7] = SHA3.B[7] ^ ((~(SHA3.B[12])) & SHA3.B[17]); + A[8] = SHA3.B[8] ^ ((~(SHA3.B[13])) & SHA3.B[18]); + A[9] = SHA3.B[9] ^ ((~(SHA3.B[14])) & SHA3.B[19]); + + A[10] = SHA3.B[10] ^ ((~(SHA3.B[15])) & SHA3.B[20]); + A[11] = SHA3.B[11] ^ ((~(SHA3.B[16])) & SHA3.B[21]); + A[12] = SHA3.B[12] ^ ((~(SHA3.B[17])) & SHA3.B[22]); + A[13] = SHA3.B[13] ^ ((~(SHA3.B[18])) & SHA3.B[23]); + A[14] = SHA3.B[14] ^ ((~(SHA3.B[19])) & SHA3.B[24]); + + A[15] = SHA3.B[15] ^ ((~(SHA3.B[20])) & SHA3.B[0]); + A[16] = SHA3.B[16] ^ ((~(SHA3.B[21])) & SHA3.B[1]); + A[17] = SHA3.B[17] ^ ((~(SHA3.B[22])) & SHA3.B[2]); + A[18] = SHA3.B[18] ^ ((~(SHA3.B[23])) & SHA3.B[3]); + A[19] = SHA3.B[19] ^ ((~(SHA3.B[24])) & SHA3.B[4]); + + A[20] = SHA3.B[20] ^ ((~(SHA3.B[0])) & SHA3.B[5]); + A[21] = SHA3.B[21] ^ ((~(SHA3.B[1])) & SHA3.B[6]); + A[22] = SHA3.B[22] ^ ((~(SHA3.B[2])) & SHA3.B[7]); + A[23] = SHA3.B[23] ^ ((~(SHA3.B[3])) & SHA3.B[8]); + A[24] = SHA3.B[24] ^ ((~(SHA3.B[4])) & SHA3.B[9]); + + /* ι step */ + A[0] ^= rc; + } + + + /** + * Perform Keccak-f function + * + * @param A The current state + */ + private static void keccakF(long[] A) + { + if (SHA3.nr == 24) + { + SHA3.keccakFRound(A, 0x0000000000000001L); + SHA3.keccakFRound(A, 0x0000000000008082L); + SHA3.keccakFRound(A, 0x800000000000808AL); + SHA3.keccakFRound(A, 0x8000000080008000L); + SHA3.keccakFRound(A, 0x000000000000808BL); + SHA3.keccakFRound(A, 0x0000000080000001L); + SHA3.keccakFRound(A, 0x8000000080008081L); + SHA3.keccakFRound(A, 0x8000000000008009L); + SHA3.keccakFRound(A, 0x000000000000008AL); + SHA3.keccakFRound(A, 0x0000000000000088L); + SHA3.keccakFRound(A, 0x0000000080008009L); + SHA3.keccakFRound(A, 0x000000008000000AL); + SHA3.keccakFRound(A, 0x000000008000808BL); + SHA3.keccakFRound(A, 0x800000000000008BL); + SHA3.keccakFRound(A, 0x8000000000008089L); + SHA3.keccakFRound(A, 0x8000000000008003L); + SHA3.keccakFRound(A, 0x8000000000008002L); + SHA3.keccakFRound(A, 0x8000000000000080L); + SHA3.keccakFRound(A, 0x000000000000800AL); + SHA3.keccakFRound(A, 0x800000008000000AL); + SHA3.keccakFRound(A, 0x8000000080008081L); + SHA3.keccakFRound(A, 0x8000000000008080L); + SHA3.keccakFRound(A, 0x0000000080000001L); + SHA3.keccakFRound(A, 0x8000000080008008L); + } + else + for (long i = 0; i < SHA3.nr; i++) + SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod); + } + + + /** + * Convert a chunk of char:s to a word + * + * @param message The message + * @param rr Bitrate in bytes + * @param ww Word size in bytes + * @param off The offset in the message + * @return Lane + */ + private static long toLane(byte[] message, ilong rr, long ww, long off) + { + long n = Math.min(len(message), rr), rc = 0; + for (long i = off + ww - 1; i >= off; i--) + rc = (rc << 8) | ((i < n) ? message[i] : 0); + return rc; + } + + + /** + * Convert a chunk of byte:s to a 64-bit word + * + * @param message The message + * @param rr Bitrate in bytes + * @param off The offset in the message + * @return Lane + */ + private static long toLane64(byte[] message, long rr, long off) + { + long n = Math.min(len(message), rr), rc = 0; + return ((off + 7 < n) ? (message[off + 7] << 56) : 0) | + ((off + 6 < n) ? (message[off + 6] << 48) : 0) | + ((off + 5 < n) ? (message[off + 5] << 40) : 0) | + ((off + 4 < n) ? (message[off + 4] << 32) : 0) | + ((off + 3 < n) ? (message[off + 3] << 24) : 0) | + ((off + 2 < n) ? (message[off + 2] << 16) : 0) | + ((off + 1 < n) ? (message[off + 1] << 8) : 0) | + ((off < n) ? (message[off]) : 0); + } + + + /** + * pad 10*1 + * + * @param msg The message to pad + * @param r The bitrate + * @return The message padded + */ + private static long[] pad10star1(byte[] msg, long r) + { + long len = msg.length; + + long nrf = len >> 3; + long nbrf = len & 7; + long ll = len % r; + + byte b = nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)); + + char[] message; + if ((r - 8 <= ll) && (ll <= r - 2)) + { + message = new char[len = nrf + 1]; + message[nrf] = b ^ 128; + } + else + { + len = (nrf + 1) << 3; + len = ((len - (len % r) + (r - 8)) >> 3) + 1; + message = new char[len]; + message[nrf] = b; + //for (long i = nrf + 1; i < len; i++) + // message[i + nrf] = 0; + message[len - 1] = -128; + } + for (long i = 0; i < nrf; i++) + message[i] = msg[i]; + + return message; + } + + + /** + * Initalise Keccak sponge + * + * @param r The bitrate + * @param c The capacity + * @param n The output size + */ + private static void initalise(long r, long c, long n) + { + SHA3.r = r; + SHA3.c = c; + SHA3.n = n; + SHA3.b = r + c; + SHA3.w = SHA3.b / 25; + SHA3.l = SHA3.lb(SHA3.w); + SHA3.nr = 12 + (SHA3.l << 1); + SHA3.wmod = (1 << SHA3.w) - 1; + SHA3.S = new long[25]; + SHA3.M = new char[(SHA3.r * SHA3.b) >> 3]; + } + + + /** + * Absorb the more of the message message to the Keccak sponge + * + * @param msg The partial message + */ + private static void update(char[] msg) + { + long rr = SHA3.r >> 3; + long ww = SHA3.w >> 3; + + SHA3.M += msg;///////////////// + long len = len(SHA3.M):///////////////// + len -= len % ((SHA3.r * SHA3.b) >> 3);/////////////// + char[] message = SHA3.M[:len];/////////////////// + SHA3.M = SHA3.M[len:];////////////((((( + + /* Absorbing phase */ + if (ww == 8) + for (long i = 0; i < len; i += rr) + { + SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0); + SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 8); + SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 16); + SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 24); + SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 32); + SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 40); + SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48); + SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 56); + SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 64); + SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 72); + SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 80); + SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 88); + SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96); + SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 104); + SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 112); + SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 120); + SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 128); + SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 136); + SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144); + SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 152); + SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 160); + SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 168); + SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 176); + SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 184); + SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192); + SHA3.keccakF(SHA3.S); + } + else + for (long i = 0; i < len; i += rr) + { + for (long j = 0; j < 25; j++) + SHA3.S[j] ^= SHA3.toLane(message, rr, ww, i + j * ww); + SHA3.keccakF(SHA3.S); + } + } + + + /** + * Squeeze the Keccak sponge + */ + private static char[] digest() + { + return digest(null); + } + + + /** + * Absorb the last part of the message and squeeze the Keccak sponge + * + * @param msg The rest of the message + */ + private static char[] digest(char[] msg) + { + if (msg == null) + msg = bytes([]); + message = SHA3.pad10star1(SHA3.M + msg, SHA3.r); + SHA3.M = null; + long len = len(message); + char[] rc = new char[(SHA3.n + 7) >> 3]; + long ptr = 0; + + long rr = SHA3.r >> 3; + long nn = SHA3.n >> 3; + long ww = SHA3.w >> 3; + + /* Absorbing phase */ + if (ww == 8) + for (long i = 0; i < len; i += rr) + { + SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0); + SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 8); + SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 16); + SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 24); + SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 32); + SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 40); + SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48); + SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 56); + SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 64); + SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 72); + SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 80); + SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 88); + SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96); + SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 104); + SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 112); + SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 120); + SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 128); + SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 136); + SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144); + SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 152); + SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 160); + SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 168); + SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 176); + SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 184); + SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192); + SHA3.keccakF(SHA3.S); + } + else + for (long i = 0; i < len; i += rr) + { + for (long j = 0; j < 25; j++) + SHA3.S[j] ^= SHA3.toLane(message, rr, ww, i + j * ww); + SHA3.keccakF(SHA3.S); + } + + /* Squeezing phase */ + long olen = SHA3.n; + long j = 0; + long ni = Math.min(25, rr); + while (olen > 0) + { + i = 0; + while ((i < ni) && (j < nn)) + { + v = SHA3.S[i]: + for (long _ = 0; _ < ww; _++) + { + if (j < nn) + { + rc[ptr] = v & 255: + ptr += 1: + } + v >>= 8: + j += 1: + } + i += 1: + } + olen -= SHA3.r; + if (olen > 0) + SHA3.keccakF(S); + } + return rc; + } + +} + |