diff options
author | Mattias Andrée <maandree@operamail.com> | 2013-08-10 06:48:51 +0200 |
---|---|---|
committer | Mattias Andrée <maandree@operamail.com> | 2013-08-10 06:48:51 +0200 |
commit | c8c268a406facf9d8d3b664bf0169c1cdc9f235e (patch) | |
tree | 1950f00fa269792c675ec6223490424c33fad382 | |
parent | split python3 version into two files (diff) | |
download | sha3sum-c8c268a406facf9d8d3b664bf0169c1cdc9f235e.tar.gz sha3sum-c8c268a406facf9d8d3b664bf0169c1cdc9f235e.tar.bz2 sha3sum-c8c268a406facf9d8d3b664bf0169c1cdc9f235e.tar.xz |
split python2 version into two files
Signed-off-by: Mattias Andrée <maandree@operamail.com>
-rw-r--r-- | python2/sha3.py | 637 | ||||
-rwxr-xr-x | python2/sha3sum.py | 619 |
2 files changed, 639 insertions, 617 deletions
diff --git a/python2/sha3.py b/python2/sha3.py new file mode 100644 index 0000000..15e64bb --- /dev/null +++ b/python2/sha3.py @@ -0,0 +1,637 @@ +#!/usr/bin/env python2 +# -*- coding: utf-8 -*- +''' +sha3sum – SHA-3 (Keccak) checksum calculator + +Copyright © 2013 Mattias Andrée (maandree@member.fsf.org) + +This program is free software: you can redistribute it and/or modify +it under the terms of the GNU Affero General Public License as published by +the Free Software Foundation, either version 3 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU Affero General Public License for more details. + +You should have received a copy of the GNU Affero General Public License +along with this program. If not, see <http://www.gnu.org/licenses/>. +''' + +class SHA3: + ''' + SHA-3/Keccak hash algorithm implementation + + @author Mattias Andrée (maandree@member.fsf.org) + ''' + + + RC = [0x0000000000000001, 0x0000000000008082, 0x800000000000808A, 0x8000000080008000, + 0x000000000000808B, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, + 0x000000000000008A, 0x0000000000000088, 0x0000000080008009, 0x000000008000000A, + 0x000000008000808B, 0x800000000000008B, 0x8000000000008089, 0x8000000000008003, + 0x8000000000008002, 0x8000000000000080, 0x000000000000800A, 0x800000008000000A, + 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008] + ''' + :list<int> Round contants + ''' + + B = [0] * 25 + ''' + :list<int> Keccak-f round temporary + ''' + + C = [0] * 5 + ''' + :list<int> Keccak-f round temporary + ''' + + + (r, c, n, b, w, wmod, l, nr) = (0, 0, 0, 0, 0, 0, 0, 0) + ''' + r:int The bitrate + c:int The capacity + n:int The output size + b:int The state size + w:int The word size + wmod:int The word mask + l:int ℓ, the binary logarithm of the word size + nr:int 12 + 2ℓ, the number of rounds + ''' + + S = None + ''' + :list<int> The current state + ''' + + M = None + ''' + :bytes Left over water to fill the sponge with at next update + ''' + + + + @staticmethod + def rotate(x, n): + ''' + Rotate a word + + @param x:int The value to rotate + @param n:int Rotation steps + @return :int The value rotated + ''' + m = n % SHA3.w + return ((x >> (SHA3.w - m)) + (x << m)) & SHA3.wmod + + + @staticmethod + def rotate64(x, n): + ''' + Rotate a 64-bit word + + @param x:int The value to rotate + @param n:int Rotation steps + @return :int The value rotated + ''' + return ((x >> (64 - n)) + (x << n)) & 0xFFFFFFFFFFFFFFFF + + + @staticmethod + def lb(x): + ''' + Binary logarithm + + @param x:int The value of which to calculate the binary logarithm + @return :int The binary logarithm + ''' + rc = 0 + if (x & 0xFF00) != 0: rc += 8 ; x >>= 8 + if (x & 0x00F0) != 0: rc += 4 ; x >>= 4 + if (x & 0x000C) != 0: rc += 2 ; x >>= 2 + if (x & 0x0002) != 0: rc += 1 + return rc + + + @staticmethod + def keccakFRound(A, rc): + ''' + Perform one round of computation + + @param A:list<int> The current state + @param rc:int Round constant + ''' + if SHA3.w == 64: + # θ step (step 1 and 2 of 3) + SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4] + SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14] + db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1) + SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24] + dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1) + SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9] + da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1) + SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19] + dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1) + de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1) + + # ρ and π steps, with last part of θ + SHA3.B[0] = SHA3.rotate64(A[0] ^ da, 0) + SHA3.B[1] = SHA3.rotate64(A[15] ^ dd, 28) + SHA3.B[2] = SHA3.rotate64(A[5] ^ db, 1) + SHA3.B[3] = SHA3.rotate64(A[20] ^ de, 27) + SHA3.B[4] = SHA3.rotate64(A[10] ^ dc, 62) + + SHA3.B[5] = SHA3.rotate64(A[6] ^ db, 44) + SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20) + SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6) + SHA3.B[8] = SHA3.rotate64(A[1] ^ da, 36) + SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55) + + SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43) + SHA3.B[11] = SHA3.rotate64(A[2] ^ da, 3) + SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25) + SHA3.B[13] = SHA3.rotate64(A[7] ^ db, 10) + SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39) + + SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21) + SHA3.B[16] = SHA3.rotate64(A[8] ^ db, 45) + SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8) + SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15) + SHA3.B[19] = SHA3.rotate64(A[3] ^ da, 41) + + SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14) + SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61) + SHA3.B[22] = SHA3.rotate64(A[4] ^ da, 18) + SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56) + SHA3.B[24] = SHA3.rotate64(A[9] ^ db, 2) + else: + # θ step (step 1 and 2 of 3) + SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4] + SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14] + db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1) + SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24] + dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1) + SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9] + da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1) + SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19] + dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1) + de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1) + + # ρ and π steps, with last part of θ + SHA3.B[0] = SHA3.rotate(A[0] ^ da, 0) + SHA3.B[1] = SHA3.rotate(A[15] ^ dd, 28) + SHA3.B[2] = SHA3.rotate(A[5] ^ db, 1) + SHA3.B[3] = SHA3.rotate(A[20] ^ de, 27) + SHA3.B[4] = SHA3.rotate(A[10] ^ dc, 62) + + SHA3.B[5] = SHA3.rotate(A[6] ^ db, 44) + SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20) + SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6) + SHA3.B[8] = SHA3.rotate(A[1] ^ da, 36) + SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55) + + SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43) + SHA3.B[11] = SHA3.rotate(A[2] ^ da, 3) + SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25) + SHA3.B[13] = SHA3.rotate(A[7] ^ db, 10) + SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39) + + SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21) + SHA3.B[16] = SHA3.rotate(A[8] ^ db, 45) + SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8) + SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15) + SHA3.B[19] = SHA3.rotate(A[3] ^ da, 41) + + SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14) + SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61) + SHA3.B[22] = SHA3.rotate(A[4] ^ da, 18) + SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56) + SHA3.B[24] = SHA3.rotate(A[9] ^ db, 2) + + # ξ step + A[0] = SHA3.B[0] ^ ((~(SHA3.B[5])) & SHA3.B[10]) + A[1] = SHA3.B[1] ^ ((~(SHA3.B[6])) & SHA3.B[11]) + A[2] = SHA3.B[2] ^ ((~(SHA3.B[7])) & SHA3.B[12]) + A[3] = SHA3.B[3] ^ ((~(SHA3.B[8])) & SHA3.B[13]) + A[4] = SHA3.B[4] ^ ((~(SHA3.B[9])) & SHA3.B[14]) + + A[5] = SHA3.B[5] ^ ((~(SHA3.B[10])) & SHA3.B[15]) + A[6] = SHA3.B[6] ^ ((~(SHA3.B[11])) & SHA3.B[16]) + A[7] = SHA3.B[7] ^ ((~(SHA3.B[12])) & SHA3.B[17]) + A[8] = SHA3.B[8] ^ ((~(SHA3.B[13])) & SHA3.B[18]) + A[9] = SHA3.B[9] ^ ((~(SHA3.B[14])) & SHA3.B[19]) + + A[10] = SHA3.B[10] ^ ((~(SHA3.B[15])) & SHA3.B[20]) + A[11] = SHA3.B[11] ^ ((~(SHA3.B[16])) & SHA3.B[21]) + A[12] = SHA3.B[12] ^ ((~(SHA3.B[17])) & SHA3.B[22]) + A[13] = SHA3.B[13] ^ ((~(SHA3.B[18])) & SHA3.B[23]) + A[14] = SHA3.B[14] ^ ((~(SHA3.B[19])) & SHA3.B[24]) + + A[15] = SHA3.B[15] ^ ((~(SHA3.B[20])) & SHA3.B[0]) + A[16] = SHA3.B[16] ^ ((~(SHA3.B[21])) & SHA3.B[1]) + A[17] = SHA3.B[17] ^ ((~(SHA3.B[22])) & SHA3.B[2]) + A[18] = SHA3.B[18] ^ ((~(SHA3.B[23])) & SHA3.B[3]) + A[19] = SHA3.B[19] ^ ((~(SHA3.B[24])) & SHA3.B[4]) + + A[20] = SHA3.B[20] ^ ((~(SHA3.B[0])) & SHA3.B[5]) + A[21] = SHA3.B[21] ^ ((~(SHA3.B[1])) & SHA3.B[6]) + A[22] = SHA3.B[22] ^ ((~(SHA3.B[2])) & SHA3.B[7]) + A[23] = SHA3.B[23] ^ ((~(SHA3.B[3])) & SHA3.B[8]) + A[24] = SHA3.B[24] ^ ((~(SHA3.B[4])) & SHA3.B[9]) + + # ι step + A[0] ^= rc + + + @staticmethod + def keccakF(A): + ''' + Perform Keccak-f function + + @param A:list<int> The current state + ''' + if (SHA3.nr == 24): + SHA3.keccakFRound(A, 0x0000000000000001) + SHA3.keccakFRound(A, 0x0000000000008082) + SHA3.keccakFRound(A, 0x800000000000808A) + SHA3.keccakFRound(A, 0x8000000080008000) + SHA3.keccakFRound(A, 0x000000000000808B) + SHA3.keccakFRound(A, 0x0000000080000001) + SHA3.keccakFRound(A, 0x8000000080008081) + SHA3.keccakFRound(A, 0x8000000000008009) + SHA3.keccakFRound(A, 0x000000000000008A) + SHA3.keccakFRound(A, 0x0000000000000088) + SHA3.keccakFRound(A, 0x0000000080008009) + SHA3.keccakFRound(A, 0x000000008000000A) + SHA3.keccakFRound(A, 0x000000008000808B) + SHA3.keccakFRound(A, 0x800000000000008B) + SHA3.keccakFRound(A, 0x8000000000008089) + SHA3.keccakFRound(A, 0x8000000000008003) + SHA3.keccakFRound(A, 0x8000000000008002) + SHA3.keccakFRound(A, 0x8000000000000080) + SHA3.keccakFRound(A, 0x000000000000800A) + SHA3.keccakFRound(A, 0x800000008000000A) + SHA3.keccakFRound(A, 0x8000000080008081) + SHA3.keccakFRound(A, 0x8000000000008080) + SHA3.keccakFRound(A, 0x0000000080000001) + SHA3.keccakFRound(A, 0x8000000080008008) + else: + for i in range(SHA3.nr): + SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod) + + + @staticmethod + def toLane(message, rr, ww, off): + ''' + Convert a chunk of char:s to a word + + @param message:bytes The message + @param rr:int Bitrate in bytes + @param ww:int Word size in bytes + @param off:int The offset in the message + @return :int Lane + ''' + rc = 0 + i = off + ww - 1 + n = min(len(message), rr) + while i >= off: + rc = (rc << 8) | (message[i] if (i < n) else 0) + i -= 1 + return rc + + + @staticmethod + def toLane64(message, rr, off): + ''' + Convert a chunk of char:s to a 64-bit word + + @param message:bytes The message + @param rr:int Bitrate in bytes + @param off:int The offset in the message + @return :int Lane + ''' + n = min(len(message), rr) + + return ((message[off + 7] << 56) if (off + 7 < n) else 0) | \ + ((message[off + 6] << 48) if (off + 6 < n) else 0) | \ + ((message[off + 5] << 40) if (off + 5 < n) else 0) | \ + ((message[off + 4] << 32) if (off + 4 < n) else 0) | \ + ((message[off + 3] << 24) if (off + 3 < n) else 0) | \ + ((message[off + 2] << 16) if (off + 2 < n) else 0) | \ + ((message[off + 1] << 8) if (off + 1 < n) else 0) | \ + ((message[off]) if (off < n) else 0) + + + @staticmethod + def pad10star1(msg, r): + ''' + pad 10*1 + + @param msg:bytes The message to pad + @param r:int The bitrate + @return :str The message padded + ''' + nnn = len(msg) << 3 + + nrf = nnn >> 3 + nbrf = nnn & 7 + ll = nnn % r + + bbbb = 1 if nbrf == 0 else ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)) + + message = None + if ((r - 8 <= ll) and (ll <= r - 2)): + message = [bbbb ^ 128] + else: + nnn = (nrf + 1) << 3 + nnn = ((nnn - (nnn % r) + (r - 8)) >> 3) + 1 + message = [0] * (nnn - nrf) + message[0] = bbbb + nnn -= nrf + message[nnn - 1] = 0x80 + + return msg[:nrf] + message + + + @staticmethod + def initialise(r, c, n): + ''' + Initialise Keccak sponge + + @param r:int The bitrate + @param c:int The capacity + @param n:int The output size + ''' + SHA3.r = r + SHA3.c = c + SHA3.n = n + SHA3.b = r + c + SHA3.w = SHA3.b // 25 + SHA3.l = SHA3.lb(SHA3.w) + SHA3.nr = 12 + (SHA3.l << 1) + SHA3.wmod = (1 << SHA3.w) - 1 + SHA3.S = [0] * 25 + SHA3.M = [] + + + @staticmethod + def update(msg, msglen = None): + ''' + Absorb the more of the message message to the Keccak sponge + + @param msg:bytes The partial message + @param msglen:int The length of the partial message + ''' + if msglen is not None: + msg = msg[:msglen] + + rr = SHA3.r >> 3 + ww = SHA3.w >> 3 + + SHA3.M += msg + nnn = len(SHA3.M) + nnn -= nnn % ((SHA3.r * SHA3.b) >> 3) + message = SHA3.M[:nnn] + SHA3.M = SHA3.M[nnn:] + + # Absorbing phase + if ww == 8: + for i in range(0, nnn, rr): + SHA3.S[ 0] ^= SHA3.toLane64(message, rr, 0) + SHA3.S[ 5] ^= SHA3.toLane64(message, rr, 8) + SHA3.S[10] ^= SHA3.toLane64(message, rr, 16) + SHA3.S[15] ^= SHA3.toLane64(message, rr, 24) + SHA3.S[20] ^= SHA3.toLane64(message, rr, 32) + SHA3.S[ 1] ^= SHA3.toLane64(message, rr, 40) + SHA3.S[ 6] ^= SHA3.toLane64(message, rr, 48) + SHA3.S[11] ^= SHA3.toLane64(message, rr, 56) + SHA3.S[16] ^= SHA3.toLane64(message, rr, 64) + SHA3.S[21] ^= SHA3.toLane64(message, rr, 72) + SHA3.S[ 2] ^= SHA3.toLane64(message, rr, 80) + SHA3.S[ 7] ^= SHA3.toLane64(message, rr, 88) + SHA3.S[12] ^= SHA3.toLane64(message, rr, 96) + SHA3.S[17] ^= SHA3.toLane64(message, rr, 104) + SHA3.S[22] ^= SHA3.toLane64(message, rr, 112) + SHA3.S[ 3] ^= SHA3.toLane64(message, rr, 120) + SHA3.S[ 8] ^= SHA3.toLane64(message, rr, 128) + SHA3.S[13] ^= SHA3.toLane64(message, rr, 136) + SHA3.S[18] ^= SHA3.toLane64(message, rr, 144) + SHA3.S[23] ^= SHA3.toLane64(message, rr, 152) + SHA3.S[ 4] ^= SHA3.toLane64(message, rr, 160) + SHA3.S[ 9] ^= SHA3.toLane64(message, rr, 168) + SHA3.S[14] ^= SHA3.toLane64(message, rr, 176) + SHA3.S[19] ^= SHA3.toLane64(message, rr, 184) + SHA3.S[24] ^= SHA3.toLane64(message, rr, 192) + SHA3.keccakF(SHA3.S) + message = message[rr:] + else: + for i in range(0, nnn, rr): + SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, 0) + SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, ww) + SHA3.S[10] ^= SHA3.toLane(message, rr, ww, 2 * ww) + SHA3.S[15] ^= SHA3.toLane(message, rr, ww, 3 * ww) + SHA3.S[20] ^= SHA3.toLane(message, rr, ww, 4 * ww) + SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, 5 * ww) + SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, 6 * ww) + SHA3.S[11] ^= SHA3.toLane(message, rr, ww, 7 * ww) + SHA3.S[16] ^= SHA3.toLane(message, rr, ww, 8 * ww) + SHA3.S[21] ^= SHA3.toLane(message, rr, ww, 9 * ww) + SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, 10 * ww) + SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, 11 * ww) + SHA3.S[12] ^= SHA3.toLane(message, rr, ww, 12 * ww) + SHA3.S[17] ^= SHA3.toLane(message, rr, ww, 13 * ww) + SHA3.S[22] ^= SHA3.toLane(message, rr, ww, 14 * ww) + SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, 15 * ww) + SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, 16 * ww) + SHA3.S[13] ^= SHA3.toLane(message, rr, ww, 17 * ww) + SHA3.S[18] ^= SHA3.toLane(message, rr, ww, 18 * ww) + SHA3.S[23] ^= SHA3.toLane(message, rr, ww, 19 * ww) + SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, 20 * ww) + SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, 21 * ww) + SHA3.S[14] ^= SHA3.toLane(message, rr, ww, 22 * ww) + SHA3.S[19] ^= SHA3.toLane(message, rr, ww, 23 * ww) + SHA3.S[24] ^= SHA3.toLane(message, rr, ww, 24 * ww) + message = message[rr:] + SHA3.keccakF(SHA3.S) + + + @staticmethod + def digest(msg = None, msglen = None, withReturn = None): + ''' + Absorb the last part of the message and squeeze the Keccak sponge + + @param msg:bytes? The rest of the message + @param msglen:int The length of the partial message + @param withReturn:bool Whether to return the hash instead of just do a quick squeeze phrase and return `None` + @return :bytes? The hash sum, or `None` if `withReturn` is `False` + ''' + if (msg is not None) and isinstance(msg, bool): + (msg, withReturn) = (withReturn, msg) + elif (msglen is not None) and isinstance(msglen, bool): + (msglen, withReturn) = (withReturn, msglen) + if msg is None: + msg = [] + elif msglen is not None: + msg = msg[:msglen] + message = SHA3.pad10star1(SHA3.M + msg, SHA3.r) + SHA3.M = None + nnn = len(message) + + rr = SHA3.r >> 3 + nn = (SHA3.n + 7) >> 3 + ww = SHA3.w >> 3 + + # Absorbing phase + if ww == 8: + for i in range(0, nnn, rr): + SHA3.S[ 0] ^= SHA3.toLane64(message, rr, 0) + SHA3.S[ 5] ^= SHA3.toLane64(message, rr, 8) + SHA3.S[10] ^= SHA3.toLane64(message, rr, 16) + SHA3.S[15] ^= SHA3.toLane64(message, rr, 24) + SHA3.S[20] ^= SHA3.toLane64(message, rr, 32) + SHA3.S[ 1] ^= SHA3.toLane64(message, rr, 40) + SHA3.S[ 6] ^= SHA3.toLane64(message, rr, 48) + SHA3.S[11] ^= SHA3.toLane64(message, rr, 56) + SHA3.S[16] ^= SHA3.toLane64(message, rr, 64) + SHA3.S[21] ^= SHA3.toLane64(message, rr, 72) + SHA3.S[ 2] ^= SHA3.toLane64(message, rr, 80) + SHA3.S[ 7] ^= SHA3.toLane64(message, rr, 88) + SHA3.S[12] ^= SHA3.toLane64(message, rr, 96) + SHA3.S[17] ^= SHA3.toLane64(message, rr, 104) + SHA3.S[22] ^= SHA3.toLane64(message, rr, 112) + SHA3.S[ 3] ^= SHA3.toLane64(message, rr, 120) + SHA3.S[ 8] ^= SHA3.toLane64(message, rr, 128) + SHA3.S[13] ^= SHA3.toLane64(message, rr, 136) + SHA3.S[18] ^= SHA3.toLane64(message, rr, 144) + SHA3.S[23] ^= SHA3.toLane64(message, rr, 152) + SHA3.S[ 4] ^= SHA3.toLane64(message, rr, 160) + SHA3.S[ 9] ^= SHA3.toLane64(message, rr, 168) + SHA3.S[14] ^= SHA3.toLane64(message, rr, 176) + SHA3.S[19] ^= SHA3.toLane64(message, rr, 184) + SHA3.S[24] ^= SHA3.toLane64(message, rr, 192) + SHA3.keccakF(SHA3.S) + message = message[rr:] + else: + for i in range(0, nnn, rr): + SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, 0) + SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, ww) + SHA3.S[10] ^= SHA3.toLane(message, rr, ww, 2 * ww) + SHA3.S[15] ^= SHA3.toLane(message, rr, ww, 3 * ww) + SHA3.S[20] ^= SHA3.toLane(message, rr, ww, 4 * ww) + SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, 5 * ww) + SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, 6 * ww) + SHA3.S[11] ^= SHA3.toLane(message, rr, ww, 7 * ww) + SHA3.S[16] ^= SHA3.toLane(message, rr, ww, 8 * ww) + SHA3.S[21] ^= SHA3.toLane(message, rr, ww, 9 * ww) + SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, 10 * ww) + SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, 11 * ww) + SHA3.S[12] ^= SHA3.toLane(message, rr, ww, 12 * ww) + SHA3.S[17] ^= SHA3.toLane(message, rr, ww, 13 * ww) + SHA3.S[22] ^= SHA3.toLane(message, rr, ww, 14 * ww) + SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, 15 * ww) + SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, 16 * ww) + SHA3.S[13] ^= SHA3.toLane(message, rr, ww, 17 * ww) + SHA3.S[18] ^= SHA3.toLane(message, rr, ww, 18 * ww) + SHA3.S[23] ^= SHA3.toLane(message, rr, ww, 19 * ww) + SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, 20 * ww) + SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, 21 * ww) + SHA3.S[14] ^= SHA3.toLane(message, rr, ww, 22 * ww) + SHA3.S[19] ^= SHA3.toLane(message, rr, ww, 23 * ww) + SHA3.S[24] ^= SHA3.toLane(message, rr, ww, 24 * ww) + message = message[rr:] + SHA3.keccakF(SHA3.S) + + # Squeezing phase + if withReturn: + rc = [0] * ((SHA3.n + 7) >> 3) + ptr = 0 + + olen = SHA3.n + j = 0 + ni = min(25, rr) + while olen > 0: + i = 0 + while (i < ni) and (j < nn): + v = SHA3.S[(i % 5) * 5 + i // 5] + for _ in range(ww): + if j < nn: + rc[ptr] = v & 255 + ptr += 1 + v >>= 8 + j += 1 + i += 1 + olen -= SHA3.r + if olen > 0: + SHA3.keccakF(SHA3.S) + if (SHA3.n & 7) != 0: + rc[len(rc) - 1] &= (1 << (SHA3.n & 7)) - 1 + + return rc + + olen = SHA3.n + while olen > SHA3.r: + olen -= SHA3.r + SHA3.keccakF(SHA3.S) + return None + + + def simpleSqueeze(times = 1): + ''' + Force some rounds of Keccak-f + + @param times:int The number of rounds + ''' + for i in range(times): + SHA3.keccakF(SHA3.S) + + + def fastSqueeze(times = 1): + ''' + Squeeze as much as is needed to get a digest a number of times + + @param times:int The number of digests + ''' + for i in range(times): + SHA3.keccakF(SHA3.S) # Last squeeze did not do a ending squeeze + olen = SHA3.n + while olen > SHA3.r: + olen -= SHA3.r + SHA3.keccakF(SHA3.S) + + + def squeeze(): + ''' + Squeeze out another digest + + @return :bytes The hash sum + ''' + SHA3.keccakF(SHA3.S) # Last squeeze did not do a ending squeeze + + nn = (SHA3.n + 7) >> 3 + ww = SHA3.w >> 3 + rc = [0] * nn + olen = SHA3.n + j = 0 + ptr = 0 + ni = min(25, SHA3.r >> 3) + + while olen > 0: + i = 0 + while (i < ni) and (j < nn): + v = SHA3.S[(i % 5) * 5 + i // 5] + for _ in range(ww): + if j < nn: + rc[ptr] = v + ptr += 1 + v >>= 8 + j += 1 + i += 1 + olen -= SHA3.r + if olen > 0: + SHA3.keccakF(SHA3.S) + + if (SHA3.n & 7) != 0: + rc[len(rc) - 1] &= (1 << (SHA3.n & 7)) - 1 + + return rc + diff --git a/python2/sha3sum.py b/python2/sha3sum.py index 22caf62..ac80fbe 100755 --- a/python2/sha3sum.py +++ b/python2/sha3sum.py @@ -22,6 +22,8 @@ along with this program. If not, see <http://www.gnu.org/licenses/>. import sys import os +from sha3 import SHA3 + stdout = os.fdopen(1, 'w') stderr = os.fdopen(2, 'w') @@ -40,623 +42,6 @@ def flush(): stdout.flush() -class SHA3: - ''' - SHA-3/Keccak hash algorithm implementation - - @author Mattias Andrée (maandree@member.fsf.org) - ''' - - - RC = [0x0000000000000001, 0x0000000000008082, 0x800000000000808A, 0x8000000080008000, - 0x000000000000808B, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, - 0x000000000000008A, 0x0000000000000088, 0x0000000080008009, 0x000000008000000A, - 0x000000008000808B, 0x800000000000008B, 0x8000000000008089, 0x8000000000008003, - 0x8000000000008002, 0x8000000000000080, 0x000000000000800A, 0x800000008000000A, - 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008] - ''' - :list<int> Round contants - ''' - - B = [0] * 25 - ''' - :list<int> Keccak-f round temporary - ''' - - C = [0] * 5 - ''' - :list<int> Keccak-f round temporary - ''' - - - (r, c, n, b, w, wmod, l, nr) = (0, 0, 0, 0, 0, 0, 0, 0) - ''' - r:int The bitrate - c:int The capacity - n:int The output size - b:int The state size - w:int The word size - wmod:int The word mask - l:int ℓ, the binary logarithm of the word size - nr:int 12 + 2ℓ, the number of rounds - ''' - - S = None - ''' - :list<int> The current state - ''' - - M = None - ''' - :bytes Left over water to fill the sponge with at next update - ''' - - - - @staticmethod - def rotate(x, n): - ''' - Rotate a word - - @param x:int The value to rotate - @param n:int Rotation steps - @return :int The value rotated - ''' - m = n % SHA3.w - return ((x >> (SHA3.w - m)) + (x << m)) & SHA3.wmod - - - @staticmethod - def rotate64(x, n): - ''' - Rotate a 64-bit word - - @param x:int The value to rotate - @param n:int Rotation steps - @return :int The value rotated - ''' - return ((x >> (64 - n)) + (x << n)) & 0xFFFFFFFFFFFFFFFF - - - @staticmethod - def lb(x): - ''' - Binary logarithm - - @param x:int The value of which to calculate the binary logarithm - @return :int The binary logarithm - ''' - rc = 0 - if (x & 0xFF00) != 0: rc += 8 ; x >>= 8 - if (x & 0x00F0) != 0: rc += 4 ; x >>= 4 - if (x & 0x000C) != 0: rc += 2 ; x >>= 2 - if (x & 0x0002) != 0: rc += 1 - return rc - - - @staticmethod - def keccakFRound(A, rc): - ''' - Perform one round of computation - - @param A:list<int> The current state - @param rc:int Round constant - ''' - if SHA3.w == 64: - # θ step (step 1 and 2 of 3) - SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4] - SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14] - db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1) - SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24] - dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1) - SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9] - da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1) - SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19] - dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1) - de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1) - - # ρ and π steps, with last part of θ - SHA3.B[0] = SHA3.rotate64(A[0] ^ da, 0) - SHA3.B[1] = SHA3.rotate64(A[15] ^ dd, 28) - SHA3.B[2] = SHA3.rotate64(A[5] ^ db, 1) - SHA3.B[3] = SHA3.rotate64(A[20] ^ de, 27) - SHA3.B[4] = SHA3.rotate64(A[10] ^ dc, 62) - - SHA3.B[5] = SHA3.rotate64(A[6] ^ db, 44) - SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20) - SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6) - SHA3.B[8] = SHA3.rotate64(A[1] ^ da, 36) - SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55) - - SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43) - SHA3.B[11] = SHA3.rotate64(A[2] ^ da, 3) - SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25) - SHA3.B[13] = SHA3.rotate64(A[7] ^ db, 10) - SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39) - - SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21) - SHA3.B[16] = SHA3.rotate64(A[8] ^ db, 45) - SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8) - SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15) - SHA3.B[19] = SHA3.rotate64(A[3] ^ da, 41) - - SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14) - SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61) - SHA3.B[22] = SHA3.rotate64(A[4] ^ da, 18) - SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56) - SHA3.B[24] = SHA3.rotate64(A[9] ^ db, 2) - else: - # θ step (step 1 and 2 of 3) - SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4] - SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14] - db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1) - SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24] - dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1) - SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9] - da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1) - SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19] - dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1) - de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1) - - # ρ and π steps, with last part of θ - SHA3.B[0] = SHA3.rotate(A[0] ^ da, 0) - SHA3.B[1] = SHA3.rotate(A[15] ^ dd, 28) - SHA3.B[2] = SHA3.rotate(A[5] ^ db, 1) - SHA3.B[3] = SHA3.rotate(A[20] ^ de, 27) - SHA3.B[4] = SHA3.rotate(A[10] ^ dc, 62) - - SHA3.B[5] = SHA3.rotate(A[6] ^ db, 44) - SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20) - SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6) - SHA3.B[8] = SHA3.rotate(A[1] ^ da, 36) - SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55) - - SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43) - SHA3.B[11] = SHA3.rotate(A[2] ^ da, 3) - SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25) - SHA3.B[13] = SHA3.rotate(A[7] ^ db, 10) - SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39) - - SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21) - SHA3.B[16] = SHA3.rotate(A[8] ^ db, 45) - SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8) - SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15) - SHA3.B[19] = SHA3.rotate(A[3] ^ da, 41) - - SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14) - SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61) - SHA3.B[22] = SHA3.rotate(A[4] ^ da, 18) - SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56) - SHA3.B[24] = SHA3.rotate(A[9] ^ db, 2) - - # ξ step - A[0] = SHA3.B[0] ^ ((~(SHA3.B[5])) & SHA3.B[10]) - A[1] = SHA3.B[1] ^ ((~(SHA3.B[6])) & SHA3.B[11]) - A[2] = SHA3.B[2] ^ ((~(SHA3.B[7])) & SHA3.B[12]) - A[3] = SHA3.B[3] ^ ((~(SHA3.B[8])) & SHA3.B[13]) - A[4] = SHA3.B[4] ^ ((~(SHA3.B[9])) & SHA3.B[14]) - - A[5] = SHA3.B[5] ^ ((~(SHA3.B[10])) & SHA3.B[15]) - A[6] = SHA3.B[6] ^ ((~(SHA3.B[11])) & SHA3.B[16]) - A[7] = SHA3.B[7] ^ ((~(SHA3.B[12])) & SHA3.B[17]) - A[8] = SHA3.B[8] ^ ((~(SHA3.B[13])) & SHA3.B[18]) - A[9] = SHA3.B[9] ^ ((~(SHA3.B[14])) & SHA3.B[19]) - - A[10] = SHA3.B[10] ^ ((~(SHA3.B[15])) & SHA3.B[20]) - A[11] = SHA3.B[11] ^ ((~(SHA3.B[16])) & SHA3.B[21]) - A[12] = SHA3.B[12] ^ ((~(SHA3.B[17])) & SHA3.B[22]) - A[13] = SHA3.B[13] ^ ((~(SHA3.B[18])) & SHA3.B[23]) - A[14] = SHA3.B[14] ^ ((~(SHA3.B[19])) & SHA3.B[24]) - - A[15] = SHA3.B[15] ^ ((~(SHA3.B[20])) & SHA3.B[0]) - A[16] = SHA3.B[16] ^ ((~(SHA3.B[21])) & SHA3.B[1]) - A[17] = SHA3.B[17] ^ ((~(SHA3.B[22])) & SHA3.B[2]) - A[18] = SHA3.B[18] ^ ((~(SHA3.B[23])) & SHA3.B[3]) - A[19] = SHA3.B[19] ^ ((~(SHA3.B[24])) & SHA3.B[4]) - - A[20] = SHA3.B[20] ^ ((~(SHA3.B[0])) & SHA3.B[5]) - A[21] = SHA3.B[21] ^ ((~(SHA3.B[1])) & SHA3.B[6]) - A[22] = SHA3.B[22] ^ ((~(SHA3.B[2])) & SHA3.B[7]) - A[23] = SHA3.B[23] ^ ((~(SHA3.B[3])) & SHA3.B[8]) - A[24] = SHA3.B[24] ^ ((~(SHA3.B[4])) & SHA3.B[9]) - - # ι step - A[0] ^= rc - - - @staticmethod - def keccakF(A): - ''' - Perform Keccak-f function - - @param A:list<int> The current state - ''' - if (SHA3.nr == 24): - SHA3.keccakFRound(A, 0x0000000000000001) - SHA3.keccakFRound(A, 0x0000000000008082) - SHA3.keccakFRound(A, 0x800000000000808A) - SHA3.keccakFRound(A, 0x8000000080008000) - SHA3.keccakFRound(A, 0x000000000000808B) - SHA3.keccakFRound(A, 0x0000000080000001) - SHA3.keccakFRound(A, 0x8000000080008081) - SHA3.keccakFRound(A, 0x8000000000008009) - SHA3.keccakFRound(A, 0x000000000000008A) - SHA3.keccakFRound(A, 0x0000000000000088) - SHA3.keccakFRound(A, 0x0000000080008009) - SHA3.keccakFRound(A, 0x000000008000000A) - SHA3.keccakFRound(A, 0x000000008000808B) - SHA3.keccakFRound(A, 0x800000000000008B) - SHA3.keccakFRound(A, 0x8000000000008089) - SHA3.keccakFRound(A, 0x8000000000008003) - SHA3.keccakFRound(A, 0x8000000000008002) - SHA3.keccakFRound(A, 0x8000000000000080) - SHA3.keccakFRound(A, 0x000000000000800A) - SHA3.keccakFRound(A, 0x800000008000000A) - SHA3.keccakFRound(A, 0x8000000080008081) - SHA3.keccakFRound(A, 0x8000000000008080) - SHA3.keccakFRound(A, 0x0000000080000001) - SHA3.keccakFRound(A, 0x8000000080008008) - else: - for i in range(SHA3.nr): - SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod) - - - @staticmethod - def toLane(message, rr, ww, off): - ''' - Convert a chunk of char:s to a word - - @param message:bytes The message - @param rr:int Bitrate in bytes - @param ww:int Word size in bytes - @param off:int The offset in the message - @return :int Lane - ''' - rc = 0 - i = off + ww - 1 - n = min(len(message), rr) - while i >= off: - rc = (rc << 8) | (message[i] if (i < n) else 0) - i -= 1 - return rc - - - @staticmethod - def toLane64(message, rr, off): - ''' - Convert a chunk of char:s to a 64-bit word - - @param message:bytes The message - @param rr:int Bitrate in bytes - @param off:int The offset in the message - @return :int Lane - ''' - n = min(len(message), rr) - - return ((message[off + 7] << 56) if (off + 7 < n) else 0) | \ - ((message[off + 6] << 48) if (off + 6 < n) else 0) | \ - ((message[off + 5] << 40) if (off + 5 < n) else 0) | \ - ((message[off + 4] << 32) if (off + 4 < n) else 0) | \ - ((message[off + 3] << 24) if (off + 3 < n) else 0) | \ - ((message[off + 2] << 16) if (off + 2 < n) else 0) | \ - ((message[off + 1] << 8) if (off + 1 < n) else 0) | \ - ((message[off]) if (off < n) else 0) - - - @staticmethod - def pad10star1(msg, r): - ''' - pad 10*1 - - @param msg:bytes The message to pad - @param r:int The bitrate - @return :str The message padded - ''' - nnn = len(msg) << 3 - - nrf = nnn >> 3 - nbrf = nnn & 7 - ll = nnn % r - - bbbb = 1 if nbrf == 0 else ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)) - - message = None - if ((r - 8 <= ll) and (ll <= r - 2)): - message = [bbbb ^ 128] - else: - nnn = (nrf + 1) << 3 - nnn = ((nnn - (nnn % r) + (r - 8)) >> 3) + 1 - message = [0] * (nnn - nrf) - message[0] = bbbb - nnn -= nrf - message[nnn - 1] = 0x80 - - return msg[:nrf] + message - - - @staticmethod - def initialise(r, c, n): - ''' - Initialise Keccak sponge - - @param r:int The bitrate - @param c:int The capacity - @param n:int The output size - ''' - SHA3.r = r - SHA3.c = c - SHA3.n = n - SHA3.b = r + c - SHA3.w = SHA3.b // 25 - SHA3.l = SHA3.lb(SHA3.w) - SHA3.nr = 12 + (SHA3.l << 1) - SHA3.wmod = (1 << SHA3.w) - 1 - SHA3.S = [0] * 25 - SHA3.M = [] - - - @staticmethod - def update(msg, msglen = None): - ''' - Absorb the more of the message message to the Keccak sponge - - @param msg:bytes The partial message - @param msglen:int The length of the partial message - ''' - if msglen is not None: - msg = msg[:msglen] - - rr = SHA3.r >> 3 - ww = SHA3.w >> 3 - - SHA3.M += msg - nnn = len(SHA3.M) - nnn -= nnn % ((SHA3.r * SHA3.b) >> 3) - message = SHA3.M[:nnn] - SHA3.M = SHA3.M[nnn:] - - # Absorbing phase - if ww == 8: - for i in range(0, nnn, rr): - SHA3.S[ 0] ^= SHA3.toLane64(message, rr, 0) - SHA3.S[ 5] ^= SHA3.toLane64(message, rr, 8) - SHA3.S[10] ^= SHA3.toLane64(message, rr, 16) - SHA3.S[15] ^= SHA3.toLane64(message, rr, 24) - SHA3.S[20] ^= SHA3.toLane64(message, rr, 32) - SHA3.S[ 1] ^= SHA3.toLane64(message, rr, 40) - SHA3.S[ 6] ^= SHA3.toLane64(message, rr, 48) - SHA3.S[11] ^= SHA3.toLane64(message, rr, 56) - SHA3.S[16] ^= SHA3.toLane64(message, rr, 64) - SHA3.S[21] ^= SHA3.toLane64(message, rr, 72) - SHA3.S[ 2] ^= SHA3.toLane64(message, rr, 80) - SHA3.S[ 7] ^= SHA3.toLane64(message, rr, 88) - SHA3.S[12] ^= SHA3.toLane64(message, rr, 96) - SHA3.S[17] ^= SHA3.toLane64(message, rr, 104) - SHA3.S[22] ^= SHA3.toLane64(message, rr, 112) - SHA3.S[ 3] ^= SHA3.toLane64(message, rr, 120) - SHA3.S[ 8] ^= SHA3.toLane64(message, rr, 128) - SHA3.S[13] ^= SHA3.toLane64(message, rr, 136) - SHA3.S[18] ^= SHA3.toLane64(message, rr, 144) - SHA3.S[23] ^= SHA3.toLane64(message, rr, 152) - SHA3.S[ 4] ^= SHA3.toLane64(message, rr, 160) - SHA3.S[ 9] ^= SHA3.toLane64(message, rr, 168) - SHA3.S[14] ^= SHA3.toLane64(message, rr, 176) - SHA3.S[19] ^= SHA3.toLane64(message, rr, 184) - SHA3.S[24] ^= SHA3.toLane64(message, rr, 192) - SHA3.keccakF(SHA3.S) - message = message[rr:] - else: - for i in range(0, nnn, rr): - SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, 0) - SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, ww) - SHA3.S[10] ^= SHA3.toLane(message, rr, ww, 2 * ww) - SHA3.S[15] ^= SHA3.toLane(message, rr, ww, 3 * ww) - SHA3.S[20] ^= SHA3.toLane(message, rr, ww, 4 * ww) - SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, 5 * ww) - SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, 6 * ww) - SHA3.S[11] ^= SHA3.toLane(message, rr, ww, 7 * ww) - SHA3.S[16] ^= SHA3.toLane(message, rr, ww, 8 * ww) - SHA3.S[21] ^= SHA3.toLane(message, rr, ww, 9 * ww) - SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, 10 * ww) - SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, 11 * ww) - SHA3.S[12] ^= SHA3.toLane(message, rr, ww, 12 * ww) - SHA3.S[17] ^= SHA3.toLane(message, rr, ww, 13 * ww) - SHA3.S[22] ^= SHA3.toLane(message, rr, ww, 14 * ww) - SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, 15 * ww) - SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, 16 * ww) - SHA3.S[13] ^= SHA3.toLane(message, rr, ww, 17 * ww) - SHA3.S[18] ^= SHA3.toLane(message, rr, ww, 18 * ww) - SHA3.S[23] ^= SHA3.toLane(message, rr, ww, 19 * ww) - SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, 20 * ww) - SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, 21 * ww) - SHA3.S[14] ^= SHA3.toLane(message, rr, ww, 22 * ww) - SHA3.S[19] ^= SHA3.toLane(message, rr, ww, 23 * ww) - SHA3.S[24] ^= SHA3.toLane(message, rr, ww, 24 * ww) - message = message[rr:] - SHA3.keccakF(SHA3.S) - - - @staticmethod - def digest(msg = None, msglen = None, withReturn = None): - ''' - Absorb the last part of the message and squeeze the Keccak sponge - - @param msg:bytes? The rest of the message - @param msglen:int The length of the partial message - @param withReturn:bool Whether to return the hash instead of just do a quick squeeze phrase and return `None` - @return :bytes? The hash sum, or `None` if `withReturn` is `False` - ''' - if (msg is not None) and isinstance(msg, bool): - (msg, withReturn) = (withReturn, msg) - elif (msglen is not None) and isinstance(msglen, bool): - (msglen, withReturn) = (withReturn, msglen) - if msg is None: - msg = [] - elif msglen is not None: - msg = msg[:msglen] - message = SHA3.pad10star1(SHA3.M + msg, SHA3.r) - SHA3.M = None - nnn = len(message) - - rr = SHA3.r >> 3 - nn = (SHA3.n + 7) >> 3 - ww = SHA3.w >> 3 - - # Absorbing phase - if ww == 8: - for i in range(0, nnn, rr): - SHA3.S[ 0] ^= SHA3.toLane64(message, rr, 0) - SHA3.S[ 5] ^= SHA3.toLane64(message, rr, 8) - SHA3.S[10] ^= SHA3.toLane64(message, rr, 16) - SHA3.S[15] ^= SHA3.toLane64(message, rr, 24) - SHA3.S[20] ^= SHA3.toLane64(message, rr, 32) - SHA3.S[ 1] ^= SHA3.toLane64(message, rr, 40) - SHA3.S[ 6] ^= SHA3.toLane64(message, rr, 48) - SHA3.S[11] ^= SHA3.toLane64(message, rr, 56) - SHA3.S[16] ^= SHA3.toLane64(message, rr, 64) - SHA3.S[21] ^= SHA3.toLane64(message, rr, 72) - SHA3.S[ 2] ^= SHA3.toLane64(message, rr, 80) - SHA3.S[ 7] ^= SHA3.toLane64(message, rr, 88) - SHA3.S[12] ^= SHA3.toLane64(message, rr, 96) - SHA3.S[17] ^= SHA3.toLane64(message, rr, 104) - SHA3.S[22] ^= SHA3.toLane64(message, rr, 112) - SHA3.S[ 3] ^= SHA3.toLane64(message, rr, 120) - SHA3.S[ 8] ^= SHA3.toLane64(message, rr, 128) - SHA3.S[13] ^= SHA3.toLane64(message, rr, 136) - SHA3.S[18] ^= SHA3.toLane64(message, rr, 144) - SHA3.S[23] ^= SHA3.toLane64(message, rr, 152) - SHA3.S[ 4] ^= SHA3.toLane64(message, rr, 160) - SHA3.S[ 9] ^= SHA3.toLane64(message, rr, 168) - SHA3.S[14] ^= SHA3.toLane64(message, rr, 176) - SHA3.S[19] ^= SHA3.toLane64(message, rr, 184) - SHA3.S[24] ^= SHA3.toLane64(message, rr, 192) - SHA3.keccakF(SHA3.S) - message = message[rr:] - else: - for i in range(0, nnn, rr): - SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, 0) - SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, ww) - SHA3.S[10] ^= SHA3.toLane(message, rr, ww, 2 * ww) - SHA3.S[15] ^= SHA3.toLane(message, rr, ww, 3 * ww) - SHA3.S[20] ^= SHA3.toLane(message, rr, ww, 4 * ww) - SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, 5 * ww) - SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, 6 * ww) - SHA3.S[11] ^= SHA3.toLane(message, rr, ww, 7 * ww) - SHA3.S[16] ^= SHA3.toLane(message, rr, ww, 8 * ww) - SHA3.S[21] ^= SHA3.toLane(message, rr, ww, 9 * ww) - SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, 10 * ww) - SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, 11 * ww) - SHA3.S[12] ^= SHA3.toLane(message, rr, ww, 12 * ww) - SHA3.S[17] ^= SHA3.toLane(message, rr, ww, 13 * ww) - SHA3.S[22] ^= SHA3.toLane(message, rr, ww, 14 * ww) - SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, 15 * ww) - SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, 16 * ww) - SHA3.S[13] ^= SHA3.toLane(message, rr, ww, 17 * ww) - SHA3.S[18] ^= SHA3.toLane(message, rr, ww, 18 * ww) - SHA3.S[23] ^= SHA3.toLane(message, rr, ww, 19 * ww) - SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, 20 * ww) - SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, 21 * ww) - SHA3.S[14] ^= SHA3.toLane(message, rr, ww, 22 * ww) - SHA3.S[19] ^= SHA3.toLane(message, rr, ww, 23 * ww) - SHA3.S[24] ^= SHA3.toLane(message, rr, ww, 24 * ww) - message = message[rr:] - SHA3.keccakF(SHA3.S) - - # Squeezing phase - if withReturn: - rc = [0] * ((SHA3.n + 7) >> 3) - ptr = 0 - - olen = SHA3.n - j = 0 - ni = min(25, rr) - while olen > 0: - i = 0 - while (i < ni) and (j < nn): - v = SHA3.S[(i % 5) * 5 + i // 5] - for _ in range(ww): - if j < nn: - rc[ptr] = v & 255 - ptr += 1 - v >>= 8 - j += 1 - i += 1 - olen -= SHA3.r - if olen > 0: - SHA3.keccakF(SHA3.S) - if (SHA3.n & 7) != 0: - rc[len(rc) - 1] &= (1 << (SHA3.n & 7)) - 1 - - return rc - - olen = SHA3.n - while olen > SHA3.r: - olen -= SHA3.r - SHA3.keccakF(SHA3.S) - return None - - - def simpleSqueeze(times = 1): - ''' - Force some rounds of Keccak-f - - @param times:int The number of rounds - ''' - for i in range(times): - SHA3.keccakF(SHA3.S) - - - def fastSqueeze(times = 1): - ''' - Squeeze as much as is needed to get a digest a number of times - - @param times:int The number of digests - ''' - for i in range(times): - SHA3.keccakF(SHA3.S) # Last squeeze did not do a ending squeeze - olen = SHA3.n - while olen > SHA3.r: - olen -= SHA3.r - SHA3.keccakF(SHA3.S) - - - def squeeze(): - ''' - Squeeze out another digest - - @return :bytes The hash sum - ''' - SHA3.keccakF(SHA3.S) # Last squeeze did not do a ending squeeze - - nn = (SHA3.n + 7) >> 3 - ww = SHA3.w >> 3 - rc = [0] * nn - olen = SHA3.n - j = 0 - ptr = 0 - ni = min(25, SHA3.r >> 3) - - while olen > 0: - i = 0 - while (i < ni) and (j < nn): - v = SHA3.S[(i % 5) * 5 + i // 5] - for _ in range(ww): - if j < nn: - rc[ptr] = v - ptr += 1 - v >>= 8 - j += 1 - i += 1 - olen -= SHA3.r - if olen > 0: - SHA3.keccakF(SHA3.S) - - if (SHA3.n & 7) != 0: - rc[len(rc) - 1] &= (1 << (SHA3.n & 7)) - 1 - - return rc - - if __name__ == '__main__': cmd = sys.argv[0] |