aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMattias Andrée <maandree@operamail.com>2013-08-10 06:46:53 +0200
committerMattias Andrée <maandree@operamail.com>2013-08-10 06:46:53 +0200
commitaed8ab1b62ae4712d97d53ce31a915cd3446dcad (patch)
tree90a49d7fb0ef086ff43492c50f71d104311d3580
parentadd concurrency support in java (diff)
downloadsha3sum-aed8ab1b62ae4712d97d53ce31a915cd3446dcad.tar.gz
sha3sum-aed8ab1b62ae4712d97d53ce31a915cd3446dcad.tar.bz2
sha3sum-aed8ab1b62ae4712d97d53ce31a915cd3446dcad.tar.xz
split python3 version into two files
Signed-off-by: Mattias Andrée <maandree@operamail.com>
-rw-r--r--python3/sha3.py630
-rwxr-xr-xpython3/sha3sum.py613
2 files changed, 632 insertions, 611 deletions
diff --git a/python3/sha3.py b/python3/sha3.py
new file mode 100644
index 0000000..340cf5f
--- /dev/null
+++ b/python3/sha3.py
@@ -0,0 +1,630 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+'''
+sha3sum – SHA-3 (Keccak) checksum calculator
+
+Copyright © 2013 Mattias Andrée (maandree@member.fsf.org)
+
+This program is free software: you can redistribute it and/or modify
+it under the terms of the GNU Affero General Public License as published by
+the Free Software Foundation, either version 3 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU Affero General Public License for more details.
+
+You should have received a copy of the GNU Affero General Public License
+along with this program. If not, see <http://www.gnu.org/licenses/>.
+'''
+
+class SHA3:
+ '''
+ SHA-3/Keccak hash algorithm implementation
+
+ @author Mattias Andrée (maandree@member.fsf.org)
+ '''
+
+
+ RC = [0x0000000000000001, 0x0000000000008082, 0x800000000000808A, 0x8000000080008000,
+ 0x000000000000808B, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
+ 0x000000000000008A, 0x0000000000000088, 0x0000000080008009, 0x000000008000000A,
+ 0x000000008000808B, 0x800000000000008B, 0x8000000000008089, 0x8000000000008003,
+ 0x8000000000008002, 0x8000000000000080, 0x000000000000800A, 0x800000008000000A,
+ 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008]
+ '''
+ :list<int> Round contants
+ '''
+
+ B = [0] * 25
+ '''
+ :list<int> Keccak-f round temporary
+ '''
+
+ C = [0] * 5
+ '''
+ :list<int> Keccak-f round temporary
+ '''
+
+
+ (r, c, n, b, w, wmod, l, nr) = (0, 0, 0, 0, 0, 0, 0, 0)
+ '''
+ r:int The bitrate
+ c:int The capacity
+ n:int The output size
+ b:int The state size
+ w:int The word size
+ wmod:int The word mask
+ l:int ℓ, the binary logarithm of the word size
+ nr:int 12 + 2ℓ, the number of rounds
+ '''
+
+ S = None
+ '''
+ :list<int> The current state
+ '''
+
+ M = None
+ '''
+ :bytes Left over water to fill the sponge with at next update
+ '''
+
+
+
+ @staticmethod
+ def rotate(x, n):
+ '''
+ Rotate a word
+
+ @param x:int The value to rotate
+ @param n:int Rotation steps
+ @return :int The value rotated
+ '''
+ m = n % SHA3.w
+ return ((x >> (SHA3.w - m)) + (x << m)) & SHA3.wmod
+
+
+ @staticmethod
+ def rotate64(x, n):
+ '''
+ Rotate a 64-bit word
+
+ @param x:int The value to rotate
+ @param n:int Rotation steps
+ @return :int The value rotated
+ '''
+ return ((x >> (64 - n)) + (x << n)) & 0xFFFFFFFFFFFFFFFF
+
+
+ @staticmethod
+ def lb(x):
+ '''
+ Binary logarithm
+
+ @param x:int The value of which to calculate the binary logarithm
+ @return :int The binary logarithm
+ '''
+ rc = 0
+ if (x & 0xFF00) != 0: rc += 8 ; x >>= 8
+ if (x & 0x00F0) != 0: rc += 4 ; x >>= 4
+ if (x & 0x000C) != 0: rc += 2 ; x >>= 2
+ if (x & 0x0002) != 0: rc += 1
+ return rc
+
+
+ @staticmethod
+ def keccakFRound(A, rc):
+ '''
+ Perform one round of computation
+
+ @param A:list<int> The current state
+ @param rc:int Round constant
+ '''
+ if SHA3.w == 64:
+ # θ step (step 1 and 2 of 3)
+ SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4]
+ SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14]
+ db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1)
+ SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24]
+ dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1)
+ SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9]
+ da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1)
+ SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19]
+ dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1)
+ de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1)
+
+ # ρ and π steps, with last part of θ
+ SHA3.B[0] = SHA3.rotate64(A[0] ^ da, 0)
+ SHA3.B[1] = SHA3.rotate64(A[15] ^ dd, 28)
+ SHA3.B[2] = SHA3.rotate64(A[5] ^ db, 1)
+ SHA3.B[3] = SHA3.rotate64(A[20] ^ de, 27)
+ SHA3.B[4] = SHA3.rotate64(A[10] ^ dc, 62)
+
+ SHA3.B[5] = SHA3.rotate64(A[6] ^ db, 44)
+ SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20)
+ SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6)
+ SHA3.B[8] = SHA3.rotate64(A[1] ^ da, 36)
+ SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55)
+
+ SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43)
+ SHA3.B[11] = SHA3.rotate64(A[2] ^ da, 3)
+ SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25)
+ SHA3.B[13] = SHA3.rotate64(A[7] ^ db, 10)
+ SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39)
+
+ SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21)
+ SHA3.B[16] = SHA3.rotate64(A[8] ^ db, 45)
+ SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8)
+ SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15)
+ SHA3.B[19] = SHA3.rotate64(A[3] ^ da, 41)
+
+ SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14)
+ SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61)
+ SHA3.B[22] = SHA3.rotate64(A[4] ^ da, 18)
+ SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56)
+ SHA3.B[24] = SHA3.rotate64(A[9] ^ db, 2)
+ else:
+ # θ step (step 1 and 2 of 3)
+ SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4]
+ SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14]
+ db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1)
+ SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24]
+ dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1)
+ SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9]
+ da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1)
+ SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19]
+ dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1)
+ de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1)
+
+ # ρ and π steps, with last part of θ
+ SHA3.B[0] = SHA3.rotate(A[0] ^ da, 0)
+ SHA3.B[1] = SHA3.rotate(A[15] ^ dd, 28)
+ SHA3.B[2] = SHA3.rotate(A[5] ^ db, 1)
+ SHA3.B[3] = SHA3.rotate(A[20] ^ de, 27)
+ SHA3.B[4] = SHA3.rotate(A[10] ^ dc, 62)
+
+ SHA3.B[5] = SHA3.rotate(A[6] ^ db, 44)
+ SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20)
+ SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6)
+ SHA3.B[8] = SHA3.rotate(A[1] ^ da, 36)
+ SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55)
+
+ SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43)
+ SHA3.B[11] = SHA3.rotate(A[2] ^ da, 3)
+ SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25)
+ SHA3.B[13] = SHA3.rotate(A[7] ^ db, 10)
+ SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39)
+
+ SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21)
+ SHA3.B[16] = SHA3.rotate(A[8] ^ db, 45)
+ SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8)
+ SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15)
+ SHA3.B[19] = SHA3.rotate(A[3] ^ da, 41)
+
+ SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14)
+ SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61)
+ SHA3.B[22] = SHA3.rotate(A[4] ^ da, 18)
+ SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56)
+ SHA3.B[24] = SHA3.rotate(A[9] ^ db, 2)
+
+ # ξ step
+ A[0] = SHA3.B[0] ^ ((~(SHA3.B[5])) & SHA3.B[10])
+ A[1] = SHA3.B[1] ^ ((~(SHA3.B[6])) & SHA3.B[11])
+ A[2] = SHA3.B[2] ^ ((~(SHA3.B[7])) & SHA3.B[12])
+ A[3] = SHA3.B[3] ^ ((~(SHA3.B[8])) & SHA3.B[13])
+ A[4] = SHA3.B[4] ^ ((~(SHA3.B[9])) & SHA3.B[14])
+
+ A[5] = SHA3.B[5] ^ ((~(SHA3.B[10])) & SHA3.B[15])
+ A[6] = SHA3.B[6] ^ ((~(SHA3.B[11])) & SHA3.B[16])
+ A[7] = SHA3.B[7] ^ ((~(SHA3.B[12])) & SHA3.B[17])
+ A[8] = SHA3.B[8] ^ ((~(SHA3.B[13])) & SHA3.B[18])
+ A[9] = SHA3.B[9] ^ ((~(SHA3.B[14])) & SHA3.B[19])
+
+ A[10] = SHA3.B[10] ^ ((~(SHA3.B[15])) & SHA3.B[20])
+ A[11] = SHA3.B[11] ^ ((~(SHA3.B[16])) & SHA3.B[21])
+ A[12] = SHA3.B[12] ^ ((~(SHA3.B[17])) & SHA3.B[22])
+ A[13] = SHA3.B[13] ^ ((~(SHA3.B[18])) & SHA3.B[23])
+ A[14] = SHA3.B[14] ^ ((~(SHA3.B[19])) & SHA3.B[24])
+
+ A[15] = SHA3.B[15] ^ ((~(SHA3.B[20])) & SHA3.B[0])
+ A[16] = SHA3.B[16] ^ ((~(SHA3.B[21])) & SHA3.B[1])
+ A[17] = SHA3.B[17] ^ ((~(SHA3.B[22])) & SHA3.B[2])
+ A[18] = SHA3.B[18] ^ ((~(SHA3.B[23])) & SHA3.B[3])
+ A[19] = SHA3.B[19] ^ ((~(SHA3.B[24])) & SHA3.B[4])
+
+ A[20] = SHA3.B[20] ^ ((~(SHA3.B[0])) & SHA3.B[5])
+ A[21] = SHA3.B[21] ^ ((~(SHA3.B[1])) & SHA3.B[6])
+ A[22] = SHA3.B[22] ^ ((~(SHA3.B[2])) & SHA3.B[7])
+ A[23] = SHA3.B[23] ^ ((~(SHA3.B[3])) & SHA3.B[8])
+ A[24] = SHA3.B[24] ^ ((~(SHA3.B[4])) & SHA3.B[9])
+
+ # ι step
+ A[0] ^= rc
+
+
+ @staticmethod
+ def keccakF(A):
+ '''
+ Perform Keccak-f function
+
+ @param A:list<int> The current state
+ '''
+ if (SHA3.nr == 24):
+ SHA3.keccakFRound(A, 0x0000000000000001)
+ SHA3.keccakFRound(A, 0x0000000000008082)
+ SHA3.keccakFRound(A, 0x800000000000808A)
+ SHA3.keccakFRound(A, 0x8000000080008000)
+ SHA3.keccakFRound(A, 0x000000000000808B)
+ SHA3.keccakFRound(A, 0x0000000080000001)
+ SHA3.keccakFRound(A, 0x8000000080008081)
+ SHA3.keccakFRound(A, 0x8000000000008009)
+ SHA3.keccakFRound(A, 0x000000000000008A)
+ SHA3.keccakFRound(A, 0x0000000000000088)
+ SHA3.keccakFRound(A, 0x0000000080008009)
+ SHA3.keccakFRound(A, 0x000000008000000A)
+ SHA3.keccakFRound(A, 0x000000008000808B)
+ SHA3.keccakFRound(A, 0x800000000000008B)
+ SHA3.keccakFRound(A, 0x8000000000008089)
+ SHA3.keccakFRound(A, 0x8000000000008003)
+ SHA3.keccakFRound(A, 0x8000000000008002)
+ SHA3.keccakFRound(A, 0x8000000000000080)
+ SHA3.keccakFRound(A, 0x000000000000800A)
+ SHA3.keccakFRound(A, 0x800000008000000A)
+ SHA3.keccakFRound(A, 0x8000000080008081)
+ SHA3.keccakFRound(A, 0x8000000000008080)
+ SHA3.keccakFRound(A, 0x0000000080000001)
+ SHA3.keccakFRound(A, 0x8000000080008008)
+ else:
+ for i in range(SHA3.nr):
+ SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod)
+
+
+ @staticmethod
+ def toLane(message, rr, ww, off):
+ '''
+ Convert a chunk of char:s to a word
+
+ @param message:bytes The message
+ @param rr:int Bitrate in bytes
+ @param ww:int Word size in bytes
+ @param off:int The offset in the message
+ @return :int Lane
+ '''
+ rc = 0
+ i = off + ww - 1
+ n = min(len(message), rr)
+ while i >= off:
+ rc = (rc << 8) | (message[i] if (i < n) else 0)
+ i -= 1
+ return rc
+
+
+ @staticmethod
+ def toLane64(message, rr, off):
+ '''
+ Convert a chunk of char:s to a 64-bit word
+
+ @param message:bytes The message
+ @param rr:int Bitrate in bytes
+ @param off:int The offset in the message
+ @return :int Lane
+ '''
+ n = min(len(message), rr)
+
+ return ((message[off + 7] << 56) if (off + 7 < n) else 0) | ((message[off + 6] << 48) if (off + 6 < n) else 0) | ((message[off + 5] << 40) if (off + 5 < n) else 0) | ((message[off + 4] << 32) if (off + 4 < n) else 0) | ((message[off + 3] << 24) if (off + 3 < n) else 0) | ((message[off + 2] << 16) if (off + 2 < n) else 0) | ((message[off + 1] << 8) if (off + 1 < n) else 0) | ((message[off]) if (off < n) else 0)
+
+
+ @staticmethod
+ def pad10star1(msg, r):
+ '''
+ pad 10*1
+
+ @param msg:bytes The message to pad
+ @param r:int The bitrate
+ @return :str The message padded
+ '''
+ nnn = len(msg) << 3
+
+ nrf = nnn >> 3
+ nbrf = nnn & 7
+ ll = nnn % r
+
+ bbbb = 1 if nbrf == 0 else ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf))
+
+ message = None
+ if ((r - 8 <= ll) and (ll <= r - 2)):
+ message = [bbbb ^ 128]
+ else:
+ nnn = (nrf + 1) << 3
+ nnn = ((nnn - (nnn % r) + (r - 8)) >> 3) + 1
+ message = [0] * (nnn - nrf)
+ message[0] = bbbb
+ nnn -= nrf
+ message[nnn - 1] = 0x80
+
+ return msg[:nrf] + bytes(message)
+
+
+ @staticmethod
+ def initialise(r, c, n):
+ '''
+ Initialise Keccak sponge
+
+ @param r:int The bitrate
+ @param c:int The capacity
+ @param n:int The output size
+ '''
+ SHA3.r = r
+ SHA3.c = c
+ SHA3.n = n
+ SHA3.b = r + c
+ SHA3.w = SHA3.b // 25
+ SHA3.l = SHA3.lb(SHA3.w)
+ SHA3.nr = 12 + (SHA3.l << 1)
+ SHA3.wmod = (1 << SHA3.w) - 1
+ SHA3.S = [0] * 25
+ SHA3.M = bytes([])
+
+
+ @staticmethod
+ def update(msg, msglen = None):
+ '''
+ Absorb the more of the message message to the Keccak sponge
+
+ @param msg:bytes The partial message
+ @param msglen:int The length of the partial message
+ '''
+ if msglen is not None:
+ msg = msg[:msglen]
+
+ rr = SHA3.r >> 3
+ ww = SHA3.w >> 3
+
+ SHA3.M += msg
+ nnn = len(SHA3.M)
+ nnn -= nnn % ((SHA3.r * SHA3.b) >> 3)
+ message = SHA3.M[:nnn]
+ SHA3.M = SHA3.M[nnn:]
+
+ # Absorbing phase
+ if ww == 8:
+ for i in range(0, nnn, rr):
+ SHA3.S[ 0] ^= SHA3.toLane64(message, rr, 0)
+ SHA3.S[ 5] ^= SHA3.toLane64(message, rr, 8)
+ SHA3.S[10] ^= SHA3.toLane64(message, rr, 16)
+ SHA3.S[15] ^= SHA3.toLane64(message, rr, 24)
+ SHA3.S[20] ^= SHA3.toLane64(message, rr, 32)
+ SHA3.S[ 1] ^= SHA3.toLane64(message, rr, 40)
+ SHA3.S[ 6] ^= SHA3.toLane64(message, rr, 48)
+ SHA3.S[11] ^= SHA3.toLane64(message, rr, 56)
+ SHA3.S[16] ^= SHA3.toLane64(message, rr, 64)
+ SHA3.S[21] ^= SHA3.toLane64(message, rr, 72)
+ SHA3.S[ 2] ^= SHA3.toLane64(message, rr, 80)
+ SHA3.S[ 7] ^= SHA3.toLane64(message, rr, 88)
+ SHA3.S[12] ^= SHA3.toLane64(message, rr, 96)
+ SHA3.S[17] ^= SHA3.toLane64(message, rr, 104)
+ SHA3.S[22] ^= SHA3.toLane64(message, rr, 112)
+ SHA3.S[ 3] ^= SHA3.toLane64(message, rr, 120)
+ SHA3.S[ 8] ^= SHA3.toLane64(message, rr, 128)
+ SHA3.S[13] ^= SHA3.toLane64(message, rr, 136)
+ SHA3.S[18] ^= SHA3.toLane64(message, rr, 144)
+ SHA3.S[23] ^= SHA3.toLane64(message, rr, 152)
+ SHA3.S[ 4] ^= SHA3.toLane64(message, rr, 160)
+ SHA3.S[ 9] ^= SHA3.toLane64(message, rr, 168)
+ SHA3.S[14] ^= SHA3.toLane64(message, rr, 176)
+ SHA3.S[19] ^= SHA3.toLane64(message, rr, 184)
+ SHA3.S[24] ^= SHA3.toLane64(message, rr, 192)
+ SHA3.keccakF(SHA3.S)
+ message = message[rr:]
+ else:
+ for i in range(0, nnn, rr):
+ SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, 0)
+ SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, ww)
+ SHA3.S[10] ^= SHA3.toLane(message, rr, ww, 2 * ww)
+ SHA3.S[15] ^= SHA3.toLane(message, rr, ww, 3 * ww)
+ SHA3.S[20] ^= SHA3.toLane(message, rr, ww, 4 * ww)
+ SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, 5 * ww)
+ SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, 6 * ww)
+ SHA3.S[11] ^= SHA3.toLane(message, rr, ww, 7 * ww)
+ SHA3.S[16] ^= SHA3.toLane(message, rr, ww, 8 * ww)
+ SHA3.S[21] ^= SHA3.toLane(message, rr, ww, 9 * ww)
+ SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, 10 * ww)
+ SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, 11 * ww)
+ SHA3.S[12] ^= SHA3.toLane(message, rr, ww, 12 * ww)
+ SHA3.S[17] ^= SHA3.toLane(message, rr, ww, 13 * ww)
+ SHA3.S[22] ^= SHA3.toLane(message, rr, ww, 14 * ww)
+ SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, 15 * ww)
+ SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, 16 * ww)
+ SHA3.S[13] ^= SHA3.toLane(message, rr, ww, 17 * ww)
+ SHA3.S[18] ^= SHA3.toLane(message, rr, ww, 18 * ww)
+ SHA3.S[23] ^= SHA3.toLane(message, rr, ww, 19 * ww)
+ SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, 20 * ww)
+ SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, 21 * ww)
+ SHA3.S[14] ^= SHA3.toLane(message, rr, ww, 22 * ww)
+ SHA3.S[19] ^= SHA3.toLane(message, rr, ww, 23 * ww)
+ SHA3.S[24] ^= SHA3.toLane(message, rr, ww, 24 * ww)
+ message = message[rr:]
+ SHA3.keccakF(SHA3.S)
+
+
+ @staticmethod
+ def digest(msg = None, msglen = None, withReturn = None):
+ '''
+ Absorb the last part of the message and squeeze the Keccak sponge
+
+ @param msg:bytes? The rest of the message
+ @param msglen:int The length of the partial message
+ @param withReturn:bool Whether to return the hash instead of just do a quick squeeze phrase and return `None`
+ @return :bytes? The hash sum, or `None` if `withReturn` is `False`
+ '''
+ if (msg is not None) and isinstance(msg, bool):
+ (msg, withReturn) = (withReturn, msg)
+ elif (msglen is not None) and isinstance(msglen, bool):
+ (msglen, withReturn) = (withReturn, msglen)
+ if msg is None:
+ msg = bytes([])
+ elif msglen is not None:
+ msg = msg[:msglen]
+ message = SHA3.pad10star1(SHA3.M + msg, SHA3.r)
+ SHA3.M = None
+ nnn = len(message)
+
+ rr = SHA3.r >> 3
+ nn = (SHA3.n + 7) >> 3
+ ww = SHA3.w >> 3
+
+ # Absorbing phase
+ if ww == 8:
+ for i in range(0, nnn, rr):
+ SHA3.S[ 0] ^= SHA3.toLane64(message, rr, 0)
+ SHA3.S[ 5] ^= SHA3.toLane64(message, rr, 8)
+ SHA3.S[10] ^= SHA3.toLane64(message, rr, 16)
+ SHA3.S[15] ^= SHA3.toLane64(message, rr, 24)
+ SHA3.S[20] ^= SHA3.toLane64(message, rr, 32)
+ SHA3.S[ 1] ^= SHA3.toLane64(message, rr, 40)
+ SHA3.S[ 6] ^= SHA3.toLane64(message, rr, 48)
+ SHA3.S[11] ^= SHA3.toLane64(message, rr, 56)
+ SHA3.S[16] ^= SHA3.toLane64(message, rr, 64)
+ SHA3.S[21] ^= SHA3.toLane64(message, rr, 72)
+ SHA3.S[ 2] ^= SHA3.toLane64(message, rr, 80)
+ SHA3.S[ 7] ^= SHA3.toLane64(message, rr, 88)
+ SHA3.S[12] ^= SHA3.toLane64(message, rr, 96)
+ SHA3.S[17] ^= SHA3.toLane64(message, rr, 104)
+ SHA3.S[22] ^= SHA3.toLane64(message, rr, 112)
+ SHA3.S[ 3] ^= SHA3.toLane64(message, rr, 120)
+ SHA3.S[ 8] ^= SHA3.toLane64(message, rr, 128)
+ SHA3.S[13] ^= SHA3.toLane64(message, rr, 136)
+ SHA3.S[18] ^= SHA3.toLane64(message, rr, 144)
+ SHA3.S[23] ^= SHA3.toLane64(message, rr, 152)
+ SHA3.S[ 4] ^= SHA3.toLane64(message, rr, 160)
+ SHA3.S[ 9] ^= SHA3.toLane64(message, rr, 168)
+ SHA3.S[14] ^= SHA3.toLane64(message, rr, 176)
+ SHA3.S[19] ^= SHA3.toLane64(message, rr, 184)
+ SHA3.S[24] ^= SHA3.toLane64(message, rr, 192)
+ SHA3.keccakF(SHA3.S)
+ message = message[rr:]
+ else:
+ for i in range(0, nnn, rr):
+ SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, 0)
+ SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, ww)
+ SHA3.S[10] ^= SHA3.toLane(message, rr, ww, 2 * ww)
+ SHA3.S[15] ^= SHA3.toLane(message, rr, ww, 3 * ww)
+ SHA3.S[20] ^= SHA3.toLane(message, rr, ww, 4 * ww)
+ SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, 5 * ww)
+ SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, 6 * ww)
+ SHA3.S[11] ^= SHA3.toLane(message, rr, ww, 7 * ww)
+ SHA3.S[16] ^= SHA3.toLane(message, rr, ww, 8 * ww)
+ SHA3.S[21] ^= SHA3.toLane(message, rr, ww, 9 * ww)
+ SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, 10 * ww)
+ SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, 11 * ww)
+ SHA3.S[12] ^= SHA3.toLane(message, rr, ww, 12 * ww)
+ SHA3.S[17] ^= SHA3.toLane(message, rr, ww, 13 * ww)
+ SHA3.S[22] ^= SHA3.toLane(message, rr, ww, 14 * ww)
+ SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, 15 * ww)
+ SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, 16 * ww)
+ SHA3.S[13] ^= SHA3.toLane(message, rr, ww, 17 * ww)
+ SHA3.S[18] ^= SHA3.toLane(message, rr, ww, 18 * ww)
+ SHA3.S[23] ^= SHA3.toLane(message, rr, ww, 19 * ww)
+ SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, 20 * ww)
+ SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, 21 * ww)
+ SHA3.S[14] ^= SHA3.toLane(message, rr, ww, 22 * ww)
+ SHA3.S[19] ^= SHA3.toLane(message, rr, ww, 23 * ww)
+ SHA3.S[24] ^= SHA3.toLane(message, rr, ww, 24 * ww)
+ message = message[rr:]
+ SHA3.keccakF(SHA3.S)
+
+ # Squeezing phase
+ if withReturn:
+ rc = [0] * ((SHA3.n + 7) >> 3)
+ ptr = 0
+
+ olen = SHA3.n
+ j = 0
+ ni = min(25, rr)
+ while olen > 0:
+ i = 0
+ while (i < ni) and (j < nn):
+ v = SHA3.S[(i % 5) * 5 + i // 5]
+ for _ in range(ww):
+ if j < nn:
+ rc[ptr] = v & 255
+ ptr += 1
+ v >>= 8
+ j += 1
+ i += 1
+ olen -= SHA3.r
+ if olen > 0:
+ SHA3.keccakF(SHA3.S)
+ if (SHA3.n & 7) != 0:
+ rc[len(rc) - 1] &= (1 << (SHA3.n & 7)) - 1
+
+ return bytes(rc)
+
+ olen = SHA3.n
+ while olen > SHA3.r:
+ olen -= SHA3.r
+ SHA3.keccakF(SHA3.S)
+ return None
+
+
+ def simpleSqueeze(times = 1):
+ '''
+ Force some rounds of Keccak-f
+
+ @param times:int The number of rounds
+ '''
+ for i in range(times):
+ SHA3.keccakF(SHA3.S)
+
+
+ def fastSqueeze(times = 1):
+ '''
+ Squeeze as much as is needed to get a digest a number of times
+
+ @param times:int The number of digests
+ '''
+ for i in range(times):
+ SHA3.keccakF(SHA3.S) # Last squeeze did not do a ending squeeze
+ olen = SHA3.n
+ while olen > SHA3.r:
+ olen -= SHA3.r
+ SHA3.keccakF(SHA3.S)
+
+
+ def squeeze():
+ '''
+ Squeeze out another digest
+
+ @return :bytes The hash sum
+ '''
+ SHA3.keccakF(SHA3.S) # Last squeeze did not do a ending squeeze
+
+ nn = (SHA3.n + 7) >> 3
+ ww = SHA3.w >> 3
+ rc = [0] * nn
+ olen = SHA3.n
+ j = 0
+ ptr = 0
+ ni = min(25, SHA3.r >> 3)
+
+ while olen > 0:
+ i = 0
+ while (i < ni) and (j < nn):
+ v = SHA3.S[(i % 5) * 5 + i // 5]
+ for _ in range(ww):
+ if j < nn:
+ rc[ptr] = v
+ ptr += 1
+ v >>= 8
+ j += 1
+ i += 1
+ olen -= SHA3.r
+ if olen > 0:
+ SHA3.keccakF(SHA3.S)
+
+ if (SHA3.n & 7) != 0:
+ rc[len(rc) - 1] &= (1 << (SHA3.n & 7)) - 1
+
+ return bytes(rc)
+
diff --git a/python3/sha3sum.py b/python3/sha3sum.py
index e2e5246..32a96a7 100755
--- a/python3/sha3sum.py
+++ b/python3/sha3sum.py
@@ -22,623 +22,14 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
import sys
import os
+from sha3 import SHA3
+
def printerr(text, end = '\n'):
sys.stderr.buffer.write((text + end).encode('utf-8'))
sys.stderr.buffer.flush()
-class SHA3:
- '''
- SHA-3/Keccak hash algorithm implementation
-
- @author Mattias Andrée (maandree@member.fsf.org)
- '''
-
-
- RC = [0x0000000000000001, 0x0000000000008082, 0x800000000000808A, 0x8000000080008000,
- 0x000000000000808B, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
- 0x000000000000008A, 0x0000000000000088, 0x0000000080008009, 0x000000008000000A,
- 0x000000008000808B, 0x800000000000008B, 0x8000000000008089, 0x8000000000008003,
- 0x8000000000008002, 0x8000000000000080, 0x000000000000800A, 0x800000008000000A,
- 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008]
- '''
- :list<int> Round contants
- '''
-
- B = [0] * 25
- '''
- :list<int> Keccak-f round temporary
- '''
-
- C = [0] * 5
- '''
- :list<int> Keccak-f round temporary
- '''
-
-
- (r, c, n, b, w, wmod, l, nr) = (0, 0, 0, 0, 0, 0, 0, 0)
- '''
- r:int The bitrate
- c:int The capacity
- n:int The output size
- b:int The state size
- w:int The word size
- wmod:int The word mask
- l:int ℓ, the binary logarithm of the word size
- nr:int 12 + 2ℓ, the number of rounds
- '''
-
- S = None
- '''
- :list<int> The current state
- '''
-
- M = None
- '''
- :bytes Left over water to fill the sponge with at next update
- '''
-
-
-
- @staticmethod
- def rotate(x, n):
- '''
- Rotate a word
-
- @param x:int The value to rotate
- @param n:int Rotation steps
- @return :int The value rotated
- '''
- m = n % SHA3.w
- return ((x >> (SHA3.w - m)) + (x << m)) & SHA3.wmod
-
-
- @staticmethod
- def rotate64(x, n):
- '''
- Rotate a 64-bit word
-
- @param x:int The value to rotate
- @param n:int Rotation steps
- @return :int The value rotated
- '''
- return ((x >> (64 - n)) + (x << n)) & 0xFFFFFFFFFFFFFFFF
-
-
- @staticmethod
- def lb(x):
- '''
- Binary logarithm
-
- @param x:int The value of which to calculate the binary logarithm
- @return :int The binary logarithm
- '''
- rc = 0
- if (x & 0xFF00) != 0: rc += 8 ; x >>= 8
- if (x & 0x00F0) != 0: rc += 4 ; x >>= 4
- if (x & 0x000C) != 0: rc += 2 ; x >>= 2
- if (x & 0x0002) != 0: rc += 1
- return rc
-
-
- @staticmethod
- def keccakFRound(A, rc):
- '''
- Perform one round of computation
-
- @param A:list<int> The current state
- @param rc:int Round constant
- '''
- if SHA3.w == 64:
- # θ step (step 1 and 2 of 3)
- SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4]
- SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14]
- db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1)
- SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24]
- dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1)
- SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9]
- da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1)
- SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19]
- dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1)
- de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1)
-
- # ρ and π steps, with last part of θ
- SHA3.B[0] = SHA3.rotate64(A[0] ^ da, 0)
- SHA3.B[1] = SHA3.rotate64(A[15] ^ dd, 28)
- SHA3.B[2] = SHA3.rotate64(A[5] ^ db, 1)
- SHA3.B[3] = SHA3.rotate64(A[20] ^ de, 27)
- SHA3.B[4] = SHA3.rotate64(A[10] ^ dc, 62)
-
- SHA3.B[5] = SHA3.rotate64(A[6] ^ db, 44)
- SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20)
- SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6)
- SHA3.B[8] = SHA3.rotate64(A[1] ^ da, 36)
- SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55)
-
- SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43)
- SHA3.B[11] = SHA3.rotate64(A[2] ^ da, 3)
- SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25)
- SHA3.B[13] = SHA3.rotate64(A[7] ^ db, 10)
- SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39)
-
- SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21)
- SHA3.B[16] = SHA3.rotate64(A[8] ^ db, 45)
- SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8)
- SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15)
- SHA3.B[19] = SHA3.rotate64(A[3] ^ da, 41)
-
- SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14)
- SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61)
- SHA3.B[22] = SHA3.rotate64(A[4] ^ da, 18)
- SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56)
- SHA3.B[24] = SHA3.rotate64(A[9] ^ db, 2)
- else:
- # θ step (step 1 and 2 of 3)
- SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4]
- SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14]
- db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1)
- SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24]
- dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1)
- SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9]
- da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1)
- SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19]
- dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1)
- de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1)
-
- # ρ and π steps, with last part of θ
- SHA3.B[0] = SHA3.rotate(A[0] ^ da, 0)
- SHA3.B[1] = SHA3.rotate(A[15] ^ dd, 28)
- SHA3.B[2] = SHA3.rotate(A[5] ^ db, 1)
- SHA3.B[3] = SHA3.rotate(A[20] ^ de, 27)
- SHA3.B[4] = SHA3.rotate(A[10] ^ dc, 62)
-
- SHA3.B[5] = SHA3.rotate(A[6] ^ db, 44)
- SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20)
- SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6)
- SHA3.B[8] = SHA3.rotate(A[1] ^ da, 36)
- SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55)
-
- SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43)
- SHA3.B[11] = SHA3.rotate(A[2] ^ da, 3)
- SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25)
- SHA3.B[13] = SHA3.rotate(A[7] ^ db, 10)
- SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39)
-
- SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21)
- SHA3.B[16] = SHA3.rotate(A[8] ^ db, 45)
- SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8)
- SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15)
- SHA3.B[19] = SHA3.rotate(A[3] ^ da, 41)
-
- SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14)
- SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61)
- SHA3.B[22] = SHA3.rotate(A[4] ^ da, 18)
- SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56)
- SHA3.B[24] = SHA3.rotate(A[9] ^ db, 2)
-
- # ξ step
- A[0] = SHA3.B[0] ^ ((~(SHA3.B[5])) & SHA3.B[10])
- A[1] = SHA3.B[1] ^ ((~(SHA3.B[6])) & SHA3.B[11])
- A[2] = SHA3.B[2] ^ ((~(SHA3.B[7])) & SHA3.B[12])
- A[3] = SHA3.B[3] ^ ((~(SHA3.B[8])) & SHA3.B[13])
- A[4] = SHA3.B[4] ^ ((~(SHA3.B[9])) & SHA3.B[14])
-
- A[5] = SHA3.B[5] ^ ((~(SHA3.B[10])) & SHA3.B[15])
- A[6] = SHA3.B[6] ^ ((~(SHA3.B[11])) & SHA3.B[16])
- A[7] = SHA3.B[7] ^ ((~(SHA3.B[12])) & SHA3.B[17])
- A[8] = SHA3.B[8] ^ ((~(SHA3.B[13])) & SHA3.B[18])
- A[9] = SHA3.B[9] ^ ((~(SHA3.B[14])) & SHA3.B[19])
-
- A[10] = SHA3.B[10] ^ ((~(SHA3.B[15])) & SHA3.B[20])
- A[11] = SHA3.B[11] ^ ((~(SHA3.B[16])) & SHA3.B[21])
- A[12] = SHA3.B[12] ^ ((~(SHA3.B[17])) & SHA3.B[22])
- A[13] = SHA3.B[13] ^ ((~(SHA3.B[18])) & SHA3.B[23])
- A[14] = SHA3.B[14] ^ ((~(SHA3.B[19])) & SHA3.B[24])
-
- A[15] = SHA3.B[15] ^ ((~(SHA3.B[20])) & SHA3.B[0])
- A[16] = SHA3.B[16] ^ ((~(SHA3.B[21])) & SHA3.B[1])
- A[17] = SHA3.B[17] ^ ((~(SHA3.B[22])) & SHA3.B[2])
- A[18] = SHA3.B[18] ^ ((~(SHA3.B[23])) & SHA3.B[3])
- A[19] = SHA3.B[19] ^ ((~(SHA3.B[24])) & SHA3.B[4])
-
- A[20] = SHA3.B[20] ^ ((~(SHA3.B[0])) & SHA3.B[5])
- A[21] = SHA3.B[21] ^ ((~(SHA3.B[1])) & SHA3.B[6])
- A[22] = SHA3.B[22] ^ ((~(SHA3.B[2])) & SHA3.B[7])
- A[23] = SHA3.B[23] ^ ((~(SHA3.B[3])) & SHA3.B[8])
- A[24] = SHA3.B[24] ^ ((~(SHA3.B[4])) & SHA3.B[9])
-
- # ι step
- A[0] ^= rc
-
-
- @staticmethod
- def keccakF(A):
- '''
- Perform Keccak-f function
-
- @param A:list<int> The current state
- '''
- if (SHA3.nr == 24):
- SHA3.keccakFRound(A, 0x0000000000000001)
- SHA3.keccakFRound(A, 0x0000000000008082)
- SHA3.keccakFRound(A, 0x800000000000808A)
- SHA3.keccakFRound(A, 0x8000000080008000)
- SHA3.keccakFRound(A, 0x000000000000808B)
- SHA3.keccakFRound(A, 0x0000000080000001)
- SHA3.keccakFRound(A, 0x8000000080008081)
- SHA3.keccakFRound(A, 0x8000000000008009)
- SHA3.keccakFRound(A, 0x000000000000008A)
- SHA3.keccakFRound(A, 0x0000000000000088)
- SHA3.keccakFRound(A, 0x0000000080008009)
- SHA3.keccakFRound(A, 0x000000008000000A)
- SHA3.keccakFRound(A, 0x000000008000808B)
- SHA3.keccakFRound(A, 0x800000000000008B)
- SHA3.keccakFRound(A, 0x8000000000008089)
- SHA3.keccakFRound(A, 0x8000000000008003)
- SHA3.keccakFRound(A, 0x8000000000008002)
- SHA3.keccakFRound(A, 0x8000000000000080)
- SHA3.keccakFRound(A, 0x000000000000800A)
- SHA3.keccakFRound(A, 0x800000008000000A)
- SHA3.keccakFRound(A, 0x8000000080008081)
- SHA3.keccakFRound(A, 0x8000000000008080)
- SHA3.keccakFRound(A, 0x0000000080000001)
- SHA3.keccakFRound(A, 0x8000000080008008)
- else:
- for i in range(SHA3.nr):
- SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod)
-
-
- @staticmethod
- def toLane(message, rr, ww, off):
- '''
- Convert a chunk of char:s to a word
-
- @param message:bytes The message
- @param rr:int Bitrate in bytes
- @param ww:int Word size in bytes
- @param off:int The offset in the message
- @return :int Lane
- '''
- rc = 0
- i = off + ww - 1
- n = min(len(message), rr)
- while i >= off:
- rc = (rc << 8) | (message[i] if (i < n) else 0)
- i -= 1
- return rc
-
-
- @staticmethod
- def toLane64(message, rr, off):
- '''
- Convert a chunk of char:s to a 64-bit word
-
- @param message:bytes The message
- @param rr:int Bitrate in bytes
- @param off:int The offset in the message
- @return :int Lane
- '''
- n = min(len(message), rr)
-
- return ((message[off + 7] << 56) if (off + 7 < n) else 0) | ((message[off + 6] << 48) if (off + 6 < n) else 0) | ((message[off + 5] << 40) if (off + 5 < n) else 0) | ((message[off + 4] << 32) if (off + 4 < n) else 0) | ((message[off + 3] << 24) if (off + 3 < n) else 0) | ((message[off + 2] << 16) if (off + 2 < n) else 0) | ((message[off + 1] << 8) if (off + 1 < n) else 0) | ((message[off]) if (off < n) else 0)
-
-
- @staticmethod
- def pad10star1(msg, r):
- '''
- pad 10*1
-
- @param msg:bytes The message to pad
- @param r:int The bitrate
- @return :str The message padded
- '''
- nnn = len(msg) << 3
-
- nrf = nnn >> 3
- nbrf = nnn & 7
- ll = nnn % r
-
- bbbb = 1 if nbrf == 0 else ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf))
-
- message = None
- if ((r - 8 <= ll) and (ll <= r - 2)):
- message = [bbbb ^ 128]
- else:
- nnn = (nrf + 1) << 3
- nnn = ((nnn - (nnn % r) + (r - 8)) >> 3) + 1
- message = [0] * (nnn - nrf)
- message[0] = bbbb
- nnn -= nrf
- message[nnn - 1] = 0x80
-
- return msg[:nrf] + bytes(message)
-
-
- @staticmethod
- def initialise(r, c, n):
- '''
- Initialise Keccak sponge
-
- @param r:int The bitrate
- @param c:int The capacity
- @param n:int The output size
- '''
- SHA3.r = r
- SHA3.c = c
- SHA3.n = n
- SHA3.b = r + c
- SHA3.w = SHA3.b // 25
- SHA3.l = SHA3.lb(SHA3.w)
- SHA3.nr = 12 + (SHA3.l << 1)
- SHA3.wmod = (1 << SHA3.w) - 1
- SHA3.S = [0] * 25
- SHA3.M = bytes([])
-
-
- @staticmethod
- def update(msg, msglen = None):
- '''
- Absorb the more of the message message to the Keccak sponge
-
- @param msg:bytes The partial message
- @param msglen:int The length of the partial message
- '''
- if msglen is not None:
- msg = msg[:msglen]
-
- rr = SHA3.r >> 3
- ww = SHA3.w >> 3
-
- SHA3.M += msg
- nnn = len(SHA3.M)
- nnn -= nnn % ((SHA3.r * SHA3.b) >> 3)
- message = SHA3.M[:nnn]
- SHA3.M = SHA3.M[nnn:]
-
- # Absorbing phase
- if ww == 8:
- for i in range(0, nnn, rr):
- SHA3.S[ 0] ^= SHA3.toLane64(message, rr, 0)
- SHA3.S[ 5] ^= SHA3.toLane64(message, rr, 8)
- SHA3.S[10] ^= SHA3.toLane64(message, rr, 16)
- SHA3.S[15] ^= SHA3.toLane64(message, rr, 24)
- SHA3.S[20] ^= SHA3.toLane64(message, rr, 32)
- SHA3.S[ 1] ^= SHA3.toLane64(message, rr, 40)
- SHA3.S[ 6] ^= SHA3.toLane64(message, rr, 48)
- SHA3.S[11] ^= SHA3.toLane64(message, rr, 56)
- SHA3.S[16] ^= SHA3.toLane64(message, rr, 64)
- SHA3.S[21] ^= SHA3.toLane64(message, rr, 72)
- SHA3.S[ 2] ^= SHA3.toLane64(message, rr, 80)
- SHA3.S[ 7] ^= SHA3.toLane64(message, rr, 88)
- SHA3.S[12] ^= SHA3.toLane64(message, rr, 96)
- SHA3.S[17] ^= SHA3.toLane64(message, rr, 104)
- SHA3.S[22] ^= SHA3.toLane64(message, rr, 112)
- SHA3.S[ 3] ^= SHA3.toLane64(message, rr, 120)
- SHA3.S[ 8] ^= SHA3.toLane64(message, rr, 128)
- SHA3.S[13] ^= SHA3.toLane64(message, rr, 136)
- SHA3.S[18] ^= SHA3.toLane64(message, rr, 144)
- SHA3.S[23] ^= SHA3.toLane64(message, rr, 152)
- SHA3.S[ 4] ^= SHA3.toLane64(message, rr, 160)
- SHA3.S[ 9] ^= SHA3.toLane64(message, rr, 168)
- SHA3.S[14] ^= SHA3.toLane64(message, rr, 176)
- SHA3.S[19] ^= SHA3.toLane64(message, rr, 184)
- SHA3.S[24] ^= SHA3.toLane64(message, rr, 192)
- SHA3.keccakF(SHA3.S)
- message = message[rr:]
- else:
- for i in range(0, nnn, rr):
- SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, 0)
- SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, ww)
- SHA3.S[10] ^= SHA3.toLane(message, rr, ww, 2 * ww)
- SHA3.S[15] ^= SHA3.toLane(message, rr, ww, 3 * ww)
- SHA3.S[20] ^= SHA3.toLane(message, rr, ww, 4 * ww)
- SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, 5 * ww)
- SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, 6 * ww)
- SHA3.S[11] ^= SHA3.toLane(message, rr, ww, 7 * ww)
- SHA3.S[16] ^= SHA3.toLane(message, rr, ww, 8 * ww)
- SHA3.S[21] ^= SHA3.toLane(message, rr, ww, 9 * ww)
- SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, 10 * ww)
- SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, 11 * ww)
- SHA3.S[12] ^= SHA3.toLane(message, rr, ww, 12 * ww)
- SHA3.S[17] ^= SHA3.toLane(message, rr, ww, 13 * ww)
- SHA3.S[22] ^= SHA3.toLane(message, rr, ww, 14 * ww)
- SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, 15 * ww)
- SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, 16 * ww)
- SHA3.S[13] ^= SHA3.toLane(message, rr, ww, 17 * ww)
- SHA3.S[18] ^= SHA3.toLane(message, rr, ww, 18 * ww)
- SHA3.S[23] ^= SHA3.toLane(message, rr, ww, 19 * ww)
- SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, 20 * ww)
- SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, 21 * ww)
- SHA3.S[14] ^= SHA3.toLane(message, rr, ww, 22 * ww)
- SHA3.S[19] ^= SHA3.toLane(message, rr, ww, 23 * ww)
- SHA3.S[24] ^= SHA3.toLane(message, rr, ww, 24 * ww)
- message = message[rr:]
- SHA3.keccakF(SHA3.S)
-
-
- @staticmethod
- def digest(msg = None, msglen = None, withReturn = None):
- '''
- Absorb the last part of the message and squeeze the Keccak sponge
-
- @param msg:bytes? The rest of the message
- @param msglen:int The length of the partial message
- @param withReturn:bool Whether to return the hash instead of just do a quick squeeze phrase and return `None`
- @return :bytes? The hash sum, or `None` if `withReturn` is `False`
- '''
- if (msg is not None) and isinstance(msg, bool):
- (msg, withReturn) = (withReturn, msg)
- elif (msglen is not None) and isinstance(msglen, bool):
- (msglen, withReturn) = (withReturn, msglen)
- if msg is None:
- msg = bytes([])
- elif msglen is not None:
- msg = msg[:msglen]
- message = SHA3.pad10star1(SHA3.M + msg, SHA3.r)
- SHA3.M = None
- nnn = len(message)
-
- rr = SHA3.r >> 3
- nn = (SHA3.n + 7) >> 3
- ww = SHA3.w >> 3
-
- # Absorbing phase
- if ww == 8:
- for i in range(0, nnn, rr):
- SHA3.S[ 0] ^= SHA3.toLane64(message, rr, 0)
- SHA3.S[ 5] ^= SHA3.toLane64(message, rr, 8)
- SHA3.S[10] ^= SHA3.toLane64(message, rr, 16)
- SHA3.S[15] ^= SHA3.toLane64(message, rr, 24)
- SHA3.S[20] ^= SHA3.toLane64(message, rr, 32)
- SHA3.S[ 1] ^= SHA3.toLane64(message, rr, 40)
- SHA3.S[ 6] ^= SHA3.toLane64(message, rr, 48)
- SHA3.S[11] ^= SHA3.toLane64(message, rr, 56)
- SHA3.S[16] ^= SHA3.toLane64(message, rr, 64)
- SHA3.S[21] ^= SHA3.toLane64(message, rr, 72)
- SHA3.S[ 2] ^= SHA3.toLane64(message, rr, 80)
- SHA3.S[ 7] ^= SHA3.toLane64(message, rr, 88)
- SHA3.S[12] ^= SHA3.toLane64(message, rr, 96)
- SHA3.S[17] ^= SHA3.toLane64(message, rr, 104)
- SHA3.S[22] ^= SHA3.toLane64(message, rr, 112)
- SHA3.S[ 3] ^= SHA3.toLane64(message, rr, 120)
- SHA3.S[ 8] ^= SHA3.toLane64(message, rr, 128)
- SHA3.S[13] ^= SHA3.toLane64(message, rr, 136)
- SHA3.S[18] ^= SHA3.toLane64(message, rr, 144)
- SHA3.S[23] ^= SHA3.toLane64(message, rr, 152)
- SHA3.S[ 4] ^= SHA3.toLane64(message, rr, 160)
- SHA3.S[ 9] ^= SHA3.toLane64(message, rr, 168)
- SHA3.S[14] ^= SHA3.toLane64(message, rr, 176)
- SHA3.S[19] ^= SHA3.toLane64(message, rr, 184)
- SHA3.S[24] ^= SHA3.toLane64(message, rr, 192)
- SHA3.keccakF(SHA3.S)
- message = message[rr:]
- else:
- for i in range(0, nnn, rr):
- SHA3.S[ 0] ^= SHA3.toLane(message, rr, ww, 0)
- SHA3.S[ 5] ^= SHA3.toLane(message, rr, ww, ww)
- SHA3.S[10] ^= SHA3.toLane(message, rr, ww, 2 * ww)
- SHA3.S[15] ^= SHA3.toLane(message, rr, ww, 3 * ww)
- SHA3.S[20] ^= SHA3.toLane(message, rr, ww, 4 * ww)
- SHA3.S[ 1] ^= SHA3.toLane(message, rr, ww, 5 * ww)
- SHA3.S[ 6] ^= SHA3.toLane(message, rr, ww, 6 * ww)
- SHA3.S[11] ^= SHA3.toLane(message, rr, ww, 7 * ww)
- SHA3.S[16] ^= SHA3.toLane(message, rr, ww, 8 * ww)
- SHA3.S[21] ^= SHA3.toLane(message, rr, ww, 9 * ww)
- SHA3.S[ 2] ^= SHA3.toLane(message, rr, ww, 10 * ww)
- SHA3.S[ 7] ^= SHA3.toLane(message, rr, ww, 11 * ww)
- SHA3.S[12] ^= SHA3.toLane(message, rr, ww, 12 * ww)
- SHA3.S[17] ^= SHA3.toLane(message, rr, ww, 13 * ww)
- SHA3.S[22] ^= SHA3.toLane(message, rr, ww, 14 * ww)
- SHA3.S[ 3] ^= SHA3.toLane(message, rr, ww, 15 * ww)
- SHA3.S[ 8] ^= SHA3.toLane(message, rr, ww, 16 * ww)
- SHA3.S[13] ^= SHA3.toLane(message, rr, ww, 17 * ww)
- SHA3.S[18] ^= SHA3.toLane(message, rr, ww, 18 * ww)
- SHA3.S[23] ^= SHA3.toLane(message, rr, ww, 19 * ww)
- SHA3.S[ 4] ^= SHA3.toLane(message, rr, ww, 20 * ww)
- SHA3.S[ 9] ^= SHA3.toLane(message, rr, ww, 21 * ww)
- SHA3.S[14] ^= SHA3.toLane(message, rr, ww, 22 * ww)
- SHA3.S[19] ^= SHA3.toLane(message, rr, ww, 23 * ww)
- SHA3.S[24] ^= SHA3.toLane(message, rr, ww, 24 * ww)
- message = message[rr:]
- SHA3.keccakF(SHA3.S)
-
- # Squeezing phase
- if withReturn:
- rc = [0] * ((SHA3.n + 7) >> 3)
- ptr = 0
-
- olen = SHA3.n
- j = 0
- ni = min(25, rr)
- while olen > 0:
- i = 0
- while (i < ni) and (j < nn):
- v = SHA3.S[(i % 5) * 5 + i // 5]
- for _ in range(ww):
- if j < nn:
- rc[ptr] = v & 255
- ptr += 1
- v >>= 8
- j += 1
- i += 1
- olen -= SHA3.r
- if olen > 0:
- SHA3.keccakF(SHA3.S)
- if (SHA3.n & 7) != 0:
- rc[len(rc) - 1] &= (1 << (SHA3.n & 7)) - 1
-
- return bytes(rc)
-
- olen = SHA3.n
- while olen > SHA3.r:
- olen -= SHA3.r
- SHA3.keccakF(SHA3.S)
- return None
-
-
- def simpleSqueeze(times = 1):
- '''
- Force some rounds of Keccak-f
-
- @param times:int The number of rounds
- '''
- for i in range(times):
- SHA3.keccakF(SHA3.S)
-
-
- def fastSqueeze(times = 1):
- '''
- Squeeze as much as is needed to get a digest a number of times
-
- @param times:int The number of digests
- '''
- for i in range(times):
- SHA3.keccakF(SHA3.S) # Last squeeze did not do a ending squeeze
- olen = SHA3.n
- while olen > SHA3.r:
- olen -= SHA3.r
- SHA3.keccakF(SHA3.S)
-
-
- def squeeze():
- '''
- Squeeze out another digest
-
- @return :bytes The hash sum
- '''
- SHA3.keccakF(SHA3.S) # Last squeeze did not do a ending squeeze
-
- nn = (SHA3.n + 7) >> 3
- ww = SHA3.w >> 3
- rc = [0] * nn
- olen = SHA3.n
- j = 0
- ptr = 0
- ni = min(25, SHA3.r >> 3)
-
- while olen > 0:
- i = 0
- while (i < ni) and (j < nn):
- v = SHA3.S[(i % 5) * 5 + i // 5]
- for _ in range(ww):
- if j < nn:
- rc[ptr] = v
- ptr += 1
- v >>= 8
- j += 1
- i += 1
- olen -= SHA3.r
- if olen > 0:
- SHA3.keccakF(SHA3.S)
-
- if (SHA3.n & 7) != 0:
- rc[len(rc) - 1] &= (1 << (SHA3.n & 7)) - 1
-
- return bytes(rc)
-
-
-
if __name__ == '__main__':
cmd = sys.argv[0]
args = sys.argv[1:]