/**
* sha3sum – SHA-3 (Keccak) checksum calculator
*
* Copyright © 2013, 2014 Mattias Andrée (maandree@member.fsf.org)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* SHA-3/Keccak hash algorithm implementation with support for concurrent threads
*
* @author Mattias Andrée <a href="mailto:maandree@member.fsf.org">maandree@member.fsf.org</a>
*/
public class ConcurrentSHA3
{
/**
* Round contants
*/
private static final long[] RC = {
0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L,
0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L,
0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL,
0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L,
0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL,
0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L};
/**
* <p>Constructor</p>
* <p>
* Do not forget to run {@link #Initialise(int, int, int)}
* </p>
*/
public ConcurrentSHA3()
{
/* Do nothing */
}
/**
* Keccak-f round temporary
*/
private long[] B = new long[25];
/**
* Keccak-f round temporary
*/
private long[] C = new long[5];
/**
* The bitrate
*/
private int r = 0;
/**
* The capacity
*/
private int c = 0;
/**
* The output size
*/
private int n = 0;
/**
* The state size
*/
private int b = 0;
/**
* The word size
*/
private int w = 0;
/**
* The word mask
*/
private long wmod = 0;
/**
* ℓ, the binary logarithm of the word size
*/
private int l = 0;
/**
* 12 + 2ℓ, the number of rounds
*/
private int nr = 0;
/**
* Message chunk that is being processed
*/
private byte[] message = null;
/**
* The current state
*/
private long[] S = null;
/**
* Left over water to fill the sponge with at next update
*/
private byte[] M = null;
/**
* Pointer for {@link #M}
*/
private int mptr = 0;
/**
* Rotate a word
*
* @param x The value to rotate
* @param n Rotation steps, may not be 0
* @return The value rotated
*/
private long rotate(long x, int n)
{
long m;
return ((x >>> (this.w - (m = n % this.w))) + (x << m)) & this.wmod;
}
/**
* Rotate a 64-bit word
*
* @param x The value to rotate
* @param n Rotation steps, may not be 0
* @return The value rotated
*/
private static long rotate64(long x, int n)
{
return (x >>> (64 - n)) + (x << n);
}
/**
* Binary logarithm
*
* @param x The value of which to calculate the binary logarithm
* @return The binary logarithm
*/
private static int lb(int x)
{
int rc = 0;
if ((x & 0xFF00) != 0) { rc += 8; x >>= 8; }
if ((x & 0x00F0) != 0) { rc += 4; x >>= 4; }
if ((x & 0x000C) != 0) { rc += 2; x >>= 2; }
if ((x & 0x0002) != 0) rc += 1;
return rc;
}
/**
* Perform one round of computation
*
* @param A The current state
* @param rc Round constant
*/
private void keccakFRound(long[] A, long rc)
{
/* θ step (step 1 of 3) */
for (int i = 0, j = 0; i < 5; i++, j += 5)
this.C[i] = (A[j] ^ A[j + 1]) ^ (A[j + 2] ^ A[j + 3]) ^ A[j + 4];
long da, db, dc, dd, de;
if (this.w == 64)
{
/* ρ and π steps, with last two part of θ */
this.B[0] = A[ 0] ^ (da = this.C[4] ^ ConcurrentSHA3.rotate64(this.C[1], 1));
this.B[1] = ConcurrentSHA3.rotate64(A[15] ^ (dd = this.C[2] ^ ConcurrentSHA3.rotate64(this.C[4], 1)), 28);
this.B[2] = ConcurrentSHA3.rotate64(A[ 5] ^ (db = this.C[0] ^ ConcurrentSHA3.rotate64(this.C[2], 1)), 1);
this.B[3] = ConcurrentSHA3.rotate64(A[20] ^ (de = this.C[3] ^ ConcurrentSHA3.rotate64(this.C[0], 1)), 27);
this.B[4] = ConcurrentSHA3.rotate64(A[10] ^ (dc = this.C[1] ^ ConcurrentSHA3.rotate64(this.C[3], 1)), 62);
this.B[5] = ConcurrentSHA3.rotate64(A[ 6] ^ db, 44);
this.B[6] = ConcurrentSHA3.rotate64(A[21] ^ de, 20);
this.B[7] = ConcurrentSHA3.rotate64(A[11] ^ dc, 6);
this.B[8] = ConcurrentSHA3.rotate64(A[ 1] ^ da, 36);
this.B[9] = ConcurrentSHA3.rotate64(A[16] ^ dd, 55);
this.B[10] = ConcurrentSHA3.rotate64(A[12] ^ dc, 43);
this.B[11] = ConcurrentSHA3.rotate64(A[ 2] ^ da, 3);
this.B[12] = ConcurrentSHA3.rotate64(A[17] ^ dd, 25);
this.B[13] = ConcurrentSHA3.rotate64(A[ 7] ^ db, 10);
this.B[14] = ConcurrentSHA3.rotate64(A[22] ^ de, 39);
this.B[15] = ConcurrentSHA3.rotate64(A[18] ^ dd, 21);
this.B[16] = ConcurrentSHA3.rotate64(A[ 8] ^ db, 45);
this.B[17] = ConcurrentSHA3.rotate64(A[23] ^ de, 8);
this.B[18] = ConcurrentSHA3.rotate64(A[13] ^ dc, 15);
this.B[19] = ConcurrentSHA3.rotate64(A[ 3] ^ da, 41);
this.B[20] = ConcurrentSHA3.rotate64(A[24] ^ de, 14);
this.B[21] = ConcurrentSHA3.rotate64(A[14] ^ dc, 61);
this.B[22] = ConcurrentSHA3.rotate64(A[ 4] ^ da, 18);
this.B[23] = ConcurrentSHA3.rotate64(A[19] ^ dd, 56);
this.B[24] = ConcurrentSHA3.rotate64(A[ 9] ^ db, 2);
}
else
{
/* ρ and π steps, with last two part of θ */
this.B[0] = A[ 0] ^ (da = this.C[4] ^ this.rotate(this.C[1], 1));
this.B[1] = this.rotate(A[15] ^ (dd = this.C[2] ^ this.rotate(this.C[4], 1)), 28);
this.B[2] = this.rotate(A[ 5] ^ (db = this.C[0] ^ this.rotate(this.C[2], 1)), 1);
this.B[3] = this.rotate(A[20] ^ (de = this.C[3] ^ this.rotate(this.C[0], 1)), 27);
this.B[4] = this.rotate(A[10] ^ (dc = this.C[1] ^ this.rotate(this.C[3], 1)), 62);
this.B[5] = this.rotate(A[ 6] ^ db, 44);
this.B[6] = this.rotate(A[21] ^ de, 20);
this.B[7] = this.rotate(A[11] ^ dc, 6);
this.B[8] = this.rotate(A[ 1] ^ da, 36);
this.B[9] = this.rotate(A[16] ^ dd, 55);
this.B[10] = this.rotate(A[12] ^ dc, 43);
this.B[11] = this.rotate(A[ 2] ^ da, 3);
this.B[12] = this.rotate(A[17] ^ dd, 25);
this.B[13] = this.rotate(A[ 7] ^ db, 10);
this.B[14] = this.rotate(A[22] ^ de, 39);
this.B[15] = this.rotate(A[18] ^ dd, 21);
this.B[16] = this.rotate(A[ 8] ^ db, 45);
this.B[17] = this.rotate(A[23] ^ de, 8);
this.B[18] = this.rotate(A[13] ^ dc, 15);
this.B[19] = this.rotate(A[ 3] ^ da, 41);
this.B[20] = this.rotate(A[24] ^ de, 14);
this.B[21] = this.rotate(A[14] ^ dc, 61);
this.B[22] = this.rotate(A[ 4] ^ da, 18);
this.B[23] = this.rotate(A[19] ^ dd, 56);
this.B[24] = this.rotate(A[ 9] ^ db, 2);
}
/* ξ step */
for (int i = 0; i < 15; i++)
A[i ] = this.B[i ] ^ ((~(this.B[i + 5])) & this.B[i + 10]);
for (int i = 0; i < 5; i++)
{
A[i + 15] = this.B[i + 15] ^ ((~(this.B[i + 20])) & this.B[i ]);
A[i + 20] = this.B[i + 20] ^ ((~(this.B[i ])) & this.B[i + 5]);
}
/* ι step */
A[0] ^= rc;
}
/**
* Perform Keccak-f function
*
* @param A The current state
*/
private void keccakF(long[] A)
{
if (this.nr == 24)
for (int i = 0; i < 24; i++)
this.keccakFRound(A, ConcurrentSHA3.RC[i]);
else
for (int i = 0; i < this.nr; i++)
this.keccakFRound(A, ConcurrentSHA3.RC[i] & this.wmod);
}
/**
* Convert a chunk of byte:s to a word
*
* @param n {@code Math.min(SHA3.message.length, rr) + msgoff}
* msgoff The number of times to loop has run times the bitrate
* rr Bitrate in bytes
* @param ww Word size in bytes
* @param off The offset in the message
* @return Lane
*/
private long toLane(int n, int ww, int off)
{
long rc = 0;
for (int i = off + ww - 1; i >= off; i--)
rc = (rc << 8) | ((i < n) ? (long)(this.message[i] & 255) : 0L);
return rc;
}
/**
* Convert a chunk of byte:s to a 64-bit word
*
* @param n {@code Math.min(SHA3.message.length, rr) + msgoff}
* msgoff The number of times to loop has run times the bitrate
* rr Bitrate in bytes
* @param off The offset in the message
* @return Lane
*/
private long toLane64(int n, int off)
{
return ((off + 7 < n) ? ((long)(this.message[off + 7] & 255) << 56) : 0L) |
((off + 6 < n) ? ((long)(this.message[off + 6] & 255) << 48) : 0L) |
((off + 5 < n) ? ((long)(this.message[off + 5] & 255) << 40) : 0L) |
((off + 4 < n) ? ((long)(this.message[off + 4] & 255) << 32) : 0L) |
((off + 3 < n) ? ((long)(this.message[off + 3] & 255) << 24) : 0L) |
((off + 2 < n) ? ((long)(this.message[off + 2] & 255) << 16) : 0L) |
((off + 1 < n) ? ((long)(this.message[off + 1] & 255) << 8) : 0L) |
((off < n) ? ((long)(this.message[off] & 255)) : 0L);
}
/**
* pad 10*1
*
* @param msg The message to pad
* @param len The length of the message
* @param r The bitrate
* @return The actual length of {@link #message}
*/
private int pad10star1(byte[] msg, int len, int r)
{
int nrf = (len <<= 3) >> 3;
int nbrf = len & 7;
int ll = len % r;
byte b = (byte)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)));
if ((r - 8 <= ll) && (ll <= r - 2))
{
this.message = new byte[len = nrf + 1];
this.message[nrf] = (byte)(b ^ 128);
}
else
{
len = (nrf + 1) << 3;
len = ((len - (len % r) + (r - 8)) >> 3) + 1;
this.message = new byte[len];
this.message[nrf] = b;
this.message[len - 1] = -128;
}
System.arraycopy(msg, 0, this.message, 0, nrf);
return len;
}
/**
* Initialise Keccak sponge
*
* @param r The bitrate
* @param c The capacity
* @param n The output size
*/
public void initialise(int r, int c, int n)
{
this.r = r;
this.c = c;
this.n = n;
this.b = r + c;
this.w = this.b / 25;
this.l = ConcurrentSHA3.lb(this.w);
this.nr = 12 + (this.l << 1);
this.wmod = w == 64 ? -1L : (1L << this.w) - 1L;
this.S = new long[25];
if ((this.M == null) || ((this.r * this.b) >> 2 != this.M.length))
this.M = new byte[(this.r * this.b) >> 2];
this.mptr = 0;
if (this.message == null)
this.message = new byte[8 << 10];
}
/**
* Absorb the more of the message message to the Keccak sponge
*
* @param msg The partial message
*/
public void update(byte[] msg)
{
this.update(msg, msg.length);
}
/**
* Absorb the more of the message message to the Keccak sponge
*
* @param msg The partial message
* @param msglen The length of the partial message
*/
public void update(byte[] msg, int msglen)
{
int rr = this.r >> 3;
int ww = this.w >> 3;
if (this.mptr + msglen > this.M.length)
System.arraycopy(this.M, 0, this.M = new byte[(this.M.length + msglen) << 1], 0, this.mptr);
System.arraycopy(msg, 0, this.M, this.mptr, msglen);
int len = this.mptr += msglen;
len -= len % ((this.r * this.b) >> 3);
System.arraycopy(this.M, 0, (this.message.length < len) ? (this.message = new byte[len]) : this.message, 0, len);
System.arraycopy(this.M, len, this.M, 0, this.mptr -= len);
int n = Math.min(len, rr);
/* Absorbing phase */
if (ww == 8)
for (int i = 0; i < len; i += rr)
{
this.S[ 0] ^= this.toLane64(n, i + 0);
this.S[ 5] ^= this.toLane64(n, i + 8);
this.S[10] ^= this.toLane64(n, i + 16);
this.S[15] ^= this.toLane64(n, i + 24);
this.S[20] ^= this.toLane64(n, i + 32);
this.S[ 1] ^= this.toLane64(n, i + 40);
this.S[ 6] ^= this.toLane64(n, i + 48);
this.S[11] ^= this.toLane64(n, i + 56);
this.S[16] ^= this.toLane64(n, i + 64);
this.S[21] ^= this.toLane64(n, i + 72);
this.S[ 2] ^= this.toLane64(n, i + 80);
this.S[ 7] ^= this.toLane64(n, i + 88);
this.S[12] ^= this.toLane64(n, i + 96);
this.S[17] ^= this.toLane64(n, i + 104);
this.S[22] ^= this.toLane64(n, i + 112);
this.S[ 3] ^= this.toLane64(n, i + 120);
this.S[ 8] ^= this.toLane64(n, i + 128);
this.S[13] ^= this.toLane64(n, i + 136);
this.S[18] ^= this.toLane64(n, i + 144);
this.S[23] ^= this.toLane64(n, i + 152);
this.S[ 4] ^= this.toLane64(n, i + 160);
this.S[ 9] ^= this.toLane64(n, i + 168);
this.S[14] ^= this.toLane64(n, i + 176);
this.S[19] ^= this.toLane64(n, i + 184);
this.S[24] ^= this.toLane64(n, i + 192);
this.keccakF(this.S);
n += rr;
}
else
for (int i = 0; i < len; i += rr)
{
this.S[ 0] ^= this.toLane(n, ww, i + 0 );
this.S[ 5] ^= this.toLane(n, ww, i + w);
this.S[10] ^= this.toLane(n, ww, i + 2 * w);
this.S[15] ^= this.toLane(n, ww, i + 3 * w);
this.S[20] ^= this.toLane(n, ww, i + 4 * w);
this.S[ 1] ^= this.toLane(n, ww, i + 5 * w);
this.S[ 6] ^= this.toLane(n, ww, i + 6 * w);
this.S[11] ^= this.toLane(n, ww, i + 7 * w);
this.S[16] ^= this.toLane(n, ww, i + 8 * w);
this.S[21] ^= this.toLane(n, ww, i + 9 * w);
this.S[ 2] ^= this.toLane(n, ww, i + 10 * w);
this.S[ 7] ^= this.toLane(n, ww, i + 11 * w);
this.S[12] ^= this.toLane(n, ww, i + 12 * w);
this.S[17] ^= this.toLane(n, ww, i + 13 * w);
this.S[22] ^= this.toLane(n, ww, i + 14 * w);
this.S[ 3] ^= this.toLane(n, ww, i + 15 * w);
this.S[ 8] ^= this.toLane(n, ww, i + 16 * w);
this.S[13] ^= this.toLane(n, ww, i + 17 * w);
this.S[18] ^= this.toLane(n, ww, i + 18 * w);
this.S[23] ^= this.toLane(n, ww, i + 19 * w);
this.S[ 4] ^= this.toLane(n, ww, i + 20 * w);
this.S[ 9] ^= this.toLane(n, ww, i + 21 * w);
this.S[14] ^= this.toLane(n, ww, i + 22 * w);
this.S[19] ^= this.toLane(n, ww, i + 23 * w);
this.S[24] ^= this.toLane(n, ww, i + 24 * w);
this.keccakF(this.S);
n += rr;
}
}
/**
* Squeeze the Keccak sponge
*
* @return The hash sum
*/
public byte[] digest()
{
return this.digest(null, 0, true);
}
/**
* Squeeze the Keccak sponge
*
* @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null}
* @return The hash sum, or {@code null} if <tt>withReturn</tt> is {@code false}
*/
public byte[] digest(boolean withReturn)
{
return this.digest(null, 0, withReturn);
}
/**
* Absorb the last part of the message and squeeze the Keccak sponge
*
* @param msg The rest of the message
* @return The hash sum
*/
public byte[] digest(byte[] msg)
{
return this.digest(msg, msg == null ? 0 : msg.length, true);
}
/**
* Absorb the last part of the message and squeeze the Keccak sponge
*
* @param msg The rest of the message
* @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null}
* @return The hash sum, or {@code null} if <tt>withReturn</tt> is {@code false}
*/
public byte[] digest(byte[] msg, boolean withReturn)
{
return this.digest(msg, msg == null ? 0 : msg.length, withReturn);
}
/**
* Absorb the last part of the message and squeeze the Keccak sponge
*
* @param msg The rest of the message
* @param msglen The length of the partial message
* @return The hash sum
*/
public byte[] digest(byte[] msg, int msglen)
{
return this.digest(msg, msg == null ? 0 : msg.length, true);
}
/**
* Absorb the last part of the message and squeeze the Keccak sponge
*
* @param msg The rest of the message
* @param msglen The length of the partial message
* @param withReturn Whether to return the hash instead of just do a quick squeeze phrase and return {@code null}
* @return The hash sum, or {@code null} if <tt>withReturn</tt> is {@code false}
*/
public byte[] digest(byte[] msg, int msglen, boolean withReturn)
{
int len;
if ((msg == null) || (msglen == 0))
len = this.pad10star1(this.M, this.mptr, this.r);
else
{
if (this.mptr + msglen > this.M.length)
System.arraycopy(this.M, 0, this.M = new byte[this.M.length + msglen], 0, this.mptr);
System.arraycopy(msg, 0, this.M, this.mptr, msglen);
len = this.pad10star1(this.M, this.mptr + msglen, this.r);
}
int rr = this.r >> 3;
int nn = (this.n + 7) >> 3;
int ww = this.w >> 3;
int n = Math.min(len, rr);
/* Absorbing phase */
if (ww == 8)
for (int i = 0; i < len; i += rr)
{
this.S[ 0] ^= this.toLane64(n, i + 0);
this.S[ 5] ^= this.toLane64(n, i + 8);
this.S[10] ^= this.toLane64(n, i + 16);
this.S[15] ^= this.toLane64(n, i + 24);
this.S[20] ^= this.toLane64(n, i + 32);
this.S[ 1] ^= this.toLane64(n, i + 40);
this.S[ 6] ^= this.toLane64(n, i + 48);
this.S[11] ^= this.toLane64(n, i + 56);
this.S[16] ^= this.toLane64(n, i + 64);
this.S[21] ^= this.toLane64(n, i + 72);
this.S[ 2] ^= this.toLane64(n, i + 80);
this.S[ 7] ^= this.toLane64(n, i + 88);
this.S[12] ^= this.toLane64(n, i + 96);
this.S[17] ^= this.toLane64(n, i + 104);
this.S[22] ^= this.toLane64(n, i + 112);
this.S[ 3] ^= this.toLane64(n, i + 120);
this.S[ 8] ^= this.toLane64(n, i + 128);
this.S[13] ^= this.toLane64(n, i + 136);
this.S[18] ^= this.toLane64(n, i + 144);
this.S[23] ^= this.toLane64(n, i + 152);
this.S[ 4] ^= this.toLane64(n, i + 160);
this.S[ 9] ^= this.toLane64(n, i + 168);
this.S[14] ^= this.toLane64(n, i + 176);
this.S[19] ^= this.toLane64(n, i + 184);
this.S[24] ^= this.toLane64(n, i + 192);
this.keccakF(this.S);
n += rr;
}
else
for (int i = 0; i < len; i += rr)
{
this.S[ 0] ^= this.toLane(n, ww, i + 0 );
this.S[ 5] ^= this.toLane(n, ww, i + w);
this.S[10] ^= this.toLane(n, ww, i + 2 * w);
this.S[15] ^= this.toLane(n, ww, i + 3 * w);
this.S[20] ^= this.toLane(n, ww, i + 4 * w);
this.S[ 1] ^= this.toLane(n, ww, i + 5 * w);
this.S[ 6] ^= this.toLane(n, ww, i + 6 * w);
this.S[11] ^= this.toLane(n, ww, i + 7 * w);
this.S[16] ^= this.toLane(n, ww, i + 8 * w);
this.S[21] ^= this.toLane(n, ww, i + 9 * w);
this.S[ 2] ^= this.toLane(n, ww, i + 10 * w);
this.S[ 7] ^= this.toLane(n, ww, i + 11 * w);
this.S[12] ^= this.toLane(n, ww, i + 12 * w);
this.S[17] ^= this.toLane(n, ww, i + 13 * w);
this.S[22] ^= this.toLane(n, ww, i + 14 * w);
this.S[ 3] ^= this.toLane(n, ww, i + 15 * w);
this.S[ 8] ^= this.toLane(n, ww, i + 16 * w);
this.S[13] ^= this.toLane(n, ww, i + 17 * w);
this.S[18] ^= this.toLane(n, ww, i + 18 * w);
this.S[23] ^= this.toLane(n, ww, i + 19 * w);
this.S[ 4] ^= this.toLane(n, ww, i + 20 * w);
this.S[ 9] ^= this.toLane(n, ww, i + 21 * w);
this.S[14] ^= this.toLane(n, ww, i + 22 * w);
this.S[19] ^= this.toLane(n, ww, i + 23 * w);
this.S[24] ^= this.toLane(n, ww, i + 24 * w);
this.keccakF(this.S);
n += rr;
}
/* Squeezing phase */
if (withReturn)
{
byte[] rc = new byte[(this.n + 7) >> 3];
int ptr = 0;
int olen = this.n;
int j = 0;
int ni = Math.min(25, rr);
while (olen > 0)
{
int i = 0;
while ((i < ni) && (j < nn))
{
long v = this.S[(i % 5) * 5 + i / 5];
for (int _ = 0; _ < ww; _++)
{
if (j < nn)
{
rc[ptr] = (byte)v;
ptr += 1;
}
v >>= 8;
j += 1;
}
i += 1;
}
olen -= this.r;
if (olen > 0)
this.keccakF(this.S);
}
if ((this.n & 7) != 0)
rc[rc.length - 1] &= (1 << (this.n & 7)) - 1;
return rc;
}
int olen = this.n;
while ((olen -= this.r) > 0)
this.keccakF(this.S);
return null;
}
/**
* Force a round of Keccak-f
*/
public void simpleSqueeze()
{
this.keccakF(this.S);
}
/**
* Force some rounds of Keccak-f
*
* @param times The number of rounds
*/
public void simpleSqueeze(int times)
{
for (int i = 0; i < times; i++)
this.keccakF(this.S);
}
/**
* Squeeze as much as is needed to get a digest
*/
public void fastSqueeze()
{
this.keccakF(this.S); /* Last squeeze did not do a ending squeeze */
int olen = this.n;
while ((olen -= this.r) > 0)
this.keccakF(this.S);
}
/**
* Squeeze as much as is needed to get a digest a number of times
*
* @param times The number of digests
*/
public void fastSqueeze(int times)
{
for (int i = 0; i < times; i++)
{
this.keccakF(this.S); /* Last squeeze did not do a ending squeeze */
int olen = this.n;
while ((olen -= this.r) > 0)
this.keccakF(this.S);
}
}
/**
* Squeeze out another digest
*
* @return The hash sum
*/
public byte[] squeeze()
{
this.keccakF(this.S); /* Last squeeze did not do a ending squeeze */
int nn, ww = this.w >> 3;
byte[] rc = new byte[nn = (this.n + 7) >> 3];
int olen = this.n;
int j = 0, ptr = 0;
int ni = Math.min(25, this.r >> 3);
while (olen > 0)
{
int i = 0;
while ((i < ni) && (j < nn))
{
long v = this.S[(i % 5) * 5 + i / 5];
for (int _ = 0; _ < ww; _++)
{
if (j < nn)
{
rc[ptr] = (byte)v;
ptr += 1;
}
v >>= 8;
j += 1;
}
i += 1;
}
olen -= this.r;
if (olen > 0)
this.keccakF(this.S);
}
if ((this.n & 7) != 0)
rc[rc.length - 1] &= (1 << (this.n & 7)) - 1;
return rc;
}
}