aboutsummaryrefslogblamecommitdiffstats
path: root/c/sha3.c
blob: 392da00cb0b41dc17b399f3bb93cfb7477757da3 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

















                                                                        

                   














                               




                                                                                                                                                 

































































































































                                                                                                
                           




                                                                
  
              

                                                     




                                                                   
      




                                      
      




                                       
      




                                       
      




                                       



                                                     




                                                               
      




                                    
      




                                     
      




                                     
      




                                     


               


                                                         
     

                                                           













                               



                             
      

                                    






                                      
                                              




                                              
                                                                           

               
                              
                                       








                                                                
                                              



                                              
                                                                    
 
                           























                                                                         
         





                                                                            
                                             





                                                   
                                   
                       

                                     

                              
                                     













                                              










                                         





                                                              




                                                    


                   
  







                                                                            


                       
                                 
       
























                                                     
                   

       
                                 
       
























                                                          
                   















                                                                    






                                                    
                                     

      



                                                                         
     
           
                            
                                         

               



                   


                       
                                 
       
























                                                     
                   

       
                                 
       
























                                                          
                   


                       
                
             
                        




                                  
                                           











                                       
                
                   
                   



            
/**
 * sha3sum – SHA-3 (Keccak) checksum calculator
 * 
 * Copyright © 2013  Mattias Andrée (maandree@member.fsf.org)
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
#include <stdlib.h>


#if __x86_64__ || __ppc64__
    #define llong long int
#else
    #define llong long long int
#endif


#define null    0
#define byte    char
#define boolean long
#define true    1
#define false   0


#define min(X, Y) ((X) < (Y) ? (X) : (Y))
#define arraycopy(src, soff, dest, doff, lenght)  {long copyi; for (copyi = 0; copyi < lenght; copyi++)  dest[copyi + soff] = src[copyi + doff];}



/**
 * Round contants
 */
static const llong RC[] = {
	    0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L,
	    0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L,
	    0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL,
	    0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L,
	    0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL,
	    0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L};

/**
 * Keccak-f round temporary
 */
static llong B[25];

/**
 * Keccak-f round temporary
 */
static llong C[5];


/**
 * The bitrate
 */
static long r = 0;

/**
 * The capacity
 */
static long c = 0;

/**
 * The output size
 */
static long n = 0;

/**
 * The state size
 */
static long b = 0;

/**
 * The word size
 */
static long w = 0;

/**
 * The word mask
 */
static llong wmod = 0;

/**
 * ℓ, the binary logarithm of the word size
 */
static long l = 0;

/**
 * 12 + 2ℓ, the number of rounds
 */
static long nr = 0;
    

/**
 * The current state
 */
static llong* S = null;

/**
 * Left over water to fill the sponge with at next update
 */
static byte* M = null;
    
/**
 * Polonger for {@link #M}
 */
static long mptr = 0;



/**
 * Rotate a word
 * 
 * @param   x  The value to rotate
 * @param   n  Rotation steps, may not be 0
 * @return     The value rotated
 */
static llong rotate(llong x, long n)
{
  llong m;
  return ((x >> (w - (m = n % w))) + (x << m)) & wmod;
}


/**
 * Rotate a 64-bit word
 * 
 * @param   x  The value to rotate
 * @param   n  Rotation steps, may not be 0
 * @return     The value rotated
 */
static llong rotate64(llong x, long n)
{
  return (llong)((unsigned llong)x >> (w - n)) + (x << n);
}


/**
 * Binary logarithm
 * 
 * @param   x  The value of which to calculate the binary logarithm
 * @return     The binary logarithm
 */
static long lb(long x)
{
  return (((x & 0xFF00) == 0 ? 0 : 8) +
          ((x & 0xF0F0) == 0 ? 0 : 4)) +
         (((x & 0xCCCC) == 0 ? 0 : 2) +
	  ((x & 0xAAAA) == 0 ? 0 : 1));
}


/**
 * Perform one round of computation
 * 
 * @param  A   The current state
 * @param  rc  Round constant
 */
static void keccakFRound(llong* A, llong rc)
{
  llong da, db, dc, dd, de;
  long i, j;
  
  /* θ step (step 1 of 3) */
  for (i = 0, j = 0; i < 5; i++, j += 5)
    C[i] = (A[j] ^ A[j + 1]) ^ (A[j + 2] ^ A[j + 3]) ^ A[j + 4];
  
  if (w == 64)
    {
      /* ρ and π steps, with last two part of θ */
      B[0] =          A[ 0] ^ (da = C[4] ^ rotate64(C[1], 1));
      B[1] = rotate64(A[15] ^ (dd = C[2] ^ rotate64(C[4], 1)), 28);
      B[2] = rotate64(A[ 5] ^ (db = C[0] ^ rotate64(C[2], 1)),  1);
      B[3] = rotate64(A[20] ^ (de = C[3] ^ rotate64(C[0], 1)), 27);
      B[4] = rotate64(A[10] ^ (dc = C[1] ^ rotate64(C[3], 1)), 62);
      
      B[5] = rotate64(A[ 6] ^ db, 44);
      B[6] = rotate64(A[21] ^ de, 20);
      B[7] = rotate64(A[11] ^ dc,  6);
      B[8] = rotate64(A[ 1] ^ da, 36);
      B[9] = rotate64(A[16] ^ dd, 55);
      
      B[10] = rotate64(A[12] ^ dc, 43);
      B[11] = rotate64(A[ 2] ^ da,  3);
      B[12] = rotate64(A[17] ^ dd, 25);
      B[13] = rotate64(A[ 7] ^ db, 10);
      B[14] = rotate64(A[22] ^ de, 39);
      
      B[15] = rotate64(A[18] ^ dd, 21);
      B[16] = rotate64(A[ 8] ^ db, 45);
      B[17] = rotate64(A[23] ^ de,  8);
      B[18] = rotate64(A[13] ^ dc, 15);
      B[19] = rotate64(A[ 3] ^ da, 41);
      
      B[20] = rotate64(A[24] ^ de, 14);
      B[21] = rotate64(A[14] ^ dc, 61);
      B[22] = rotate64(A[ 4] ^ da, 18);
      B[23] = rotate64(A[19] ^ dd, 56);
      B[24] = rotate64(A[ 9] ^ db,  2);
    }
  else
    {
      /* ρ and π steps, with last two part of θ */
      B[0] =        A[ 0] ^ (da = C[4] ^ rotate(C[1], 1));
      B[1] = rotate(A[15] ^ (dd = C[2] ^ rotate(C[4], 1)), 28);
      B[2] = rotate(A[ 5] ^ (db = C[0] ^ rotate(C[2], 1)),  1);
      B[3] = rotate(A[20] ^ (de = C[3] ^ rotate(C[0], 1)), 27);
      B[4] = rotate(A[10] ^ (dc = C[1] ^ rotate(C[3], 1)), 62);
      
      B[5] = rotate(A[ 6] ^ db, 44);
      B[6] = rotate(A[21] ^ de, 20);
      B[7] = rotate(A[11] ^ dc,  6);
      B[8] = rotate(A[ 1] ^ da, 36);
      B[9] = rotate(A[16] ^ dd, 55);
      
      B[10] = rotate(A[12] ^ dc, 43);
      B[11] = rotate(A[ 2] ^ da,  3);
      B[12] = rotate(A[17] ^ dd, 25);
      B[13] = rotate(A[ 7] ^ db, 10);
      B[14] = rotate(A[22] ^ de, 39);
      
      B[15] = rotate(A[18] ^ dd, 21);
      B[16] = rotate(A[ 8] ^ db, 45);
      B[17] = rotate(A[23] ^ de,  8);
      B[18] = rotate(A[13] ^ dc, 15);
      B[19] = rotate(A[ 3] ^ da, 41);
      
      B[20] = rotate(A[24] ^ de, 14);
      B[21] = rotate(A[14] ^ dc, 61);
      B[22] = rotate(A[ 4] ^ da, 18);
      B[23] = rotate(A[19] ^ dd, 56);
      B[24] = rotate(A[ 9] ^ db,  2);
    }
  
  /* ξ step */
  for (i = 0; i < 15; i++)
    A[i     ] = B[i     ] ^ ((~(B[i +  5])) & B[i + 10]);
  for (i = 0; i < 5; i++)
    {
      A[i + 15] = B[i + 15] ^ ((~(B[i + 20])) & B[i     ]);
      A[i + 20] = B[i + 20] ^ ((~(B[i     ])) & B[i +  5]);
    }
  
  /* ι step */
  A[0] ^= rc;
}


/**
 * Perform Keccak-f function
 * 
 * @param  A  The current state
 */
static void keccakF(llong* A)
{
  long i;
  if (nr == 24)
    for (i = 0; i < nr; i++)
      keccakFRound(A, RC[i]);
  else
    for (i = 0; i < nr; i++)
      keccakFRound(A, RC[i] & wmod);
}


/**
 * Convert a chunk of byte:s to a word
 * 
 * @param   message  The message
 * @param   msglen   The length of the message
 * @param   rr       Bitrate in bytes
 * @param   ww       Word size in bytes
 * @param   off      The offset in the message
 * @return           Lane
 */
static llong toLane(byte* message, long msglen, long rr, long ww, long off)
{
  llong rc = 0;
  long n = min(msglen, rr), i;
  for (i = off + ww - 1; i >= off; i--)
    rc = (rc << 8) | ((i < n) ? (llong)(message[i] & 255) : 0L);
  return rc;
}


/**
 * Convert a chunk of byte:s to a 64-bit word
 * 
 * @param   message  The message
 * @param   msglen   The length of the message
 * @param   rr       Bitrate in bytes
 * @param   off      The offset in the message
 * @return           Lane
 */
static llong toLane64(byte* message, long msglen, long rr, long off)
{
  long n = min(msglen, rr);
  return ((off + 7 < n) ? ((llong)(message[off + 7] & 255) << 56) : 0L) |
         ((off + 6 < n) ? ((llong)(message[off + 6] & 255) << 48) : 0L) |
         ((off + 5 < n) ? ((llong)(message[off + 5] & 255) << 40) : 0L) |
         ((off + 4 < n) ? ((llong)(message[off + 4] & 255) << 32) : 0L) |
         ((off + 3 < n) ? ((llong)(message[off + 3] & 255) << 24) : 0L) |
         ((off + 2 < n) ? ((llong)(message[off + 2] & 255) << 16) : 0L) |
         ((off + 1 < n) ? ((llong)(message[off + 1] & 255) <<  8) : 0L) |
         ((off < n) ? ((llong)(message[off] & 255)) : 0L);
}


/**
 * pad 10*1
 * 
 * @param   msg  The message to pad
 * @parm    len  The length of the message
 * @param   r    The bitrate
 * @return       The message padded
 */
static byte* pad10star1(byte* msg, long len, long r)
{
  long nrf = len >> 3;
  long nbrf = len & 7;
  long ll = len % r;
  long i;
  
  byte b = (byte)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)));
  
  byte* message;
  if ((r - 8 <= ll) && (ll <= r - 2))
    {
      message = (byte*)malloc(len = nrf + 1);
      message[nrf] = (byte)(b ^ 128);
    }
  else
    {
      len = (nrf + 1) << 3;
      len = ((len - (len % r) + (r - 8)) >> 3) + 1;
      message = (byte*)malloc(len);
      message[nrf] = b;
      for (i = nrf + 1; i < len; i++)
          message[i + nrf] = 0;
      message[len - 1] = -128;
    }
  arraycopy(msg, 0, message, 0, nrf);
  
  return message;
}


/**
 * Initialise Keccak sponge
 * 
 * @param  r  The bitrate
 * @param  c  The capacity
 * @param  n  The output size
 */
extern void initialise(long r, long c, long n)
{
  r = r;
  c = c;
  n = n;
  b = r + c;
  w = b / 25;
  l = lb(w);
  nr = 12 + (l << 1);
  wmod = (1L << w) - 1L;
  S = (llong*)malloc(25 * sizeof(llong));
  M = (byte*)malloc((r * b) >> 2);
  mptr = 0;
}


/**
 * Absorb the more of the message message to the Keccak sponge
 * 
 * @param  msg     The partial message
 * @param  msglen  The length of the partial message
 */
extern void update(byte* msg, long msglen)
{
  long rr = r >> 3;
  long ww = w >> 3;
  long i;
  
  if (mptr + msglen > M.length)
    System.arraycopy(M, 0, M = new byte[(M.length + msglen) << 1], 0, mptr);
  arraycopy(msg, 0, M, mptr, msglen);
  long len = mptr += msglen;
  len -= len % ((r * b) >> 3);
  byte* message = (byte*)malloc(len);
  arraycopy(M, 0, message, 0, len);
  System.arraycopy(M, len, M, 0, mptr -= len);
  
  /* Absorbing phase */
  if (ww == 8)
    for (i = 0; i < len; i += rr)
      {
	S[ 0] ^= toLane64(message, len, rr, i + 0);
	S[ 5] ^= toLane64(message, len, rr, i + 8);
	S[10] ^= toLane64(message, len, rr, i + 16);
	S[15] ^= toLane64(message, len, rr, i + 24);
	S[20] ^= toLane64(message, len, rr, i + 32);
	S[ 1] ^= toLane64(message, len, rr, i + 40);
	S[ 6] ^= toLane64(message, len, rr, i + 48);
	S[11] ^= toLane64(message, len, rr, i + 56);
	S[16] ^= toLane64(message, len, rr, i + 64);
	S[21] ^= toLane64(message, len, rr, i + 72);
	S[ 2] ^= toLane64(message, len, rr, i + 80);
	S[ 7] ^= toLane64(message, len, rr, i + 88);
	S[12] ^= toLane64(message, len, rr, i + 96);
	S[17] ^= toLane64(message, len, rr, i + 104);
	S[22] ^= toLane64(message, len, rr, i + 112);
	S[ 3] ^= toLane64(message, len, rr, i + 120);
	S[ 8] ^= toLane64(message, len, rr, i + 128);
	S[13] ^= toLane64(message, len, rr, i + 136);
	S[18] ^= toLane64(message, len, rr, i + 144);
	S[23] ^= toLane64(message, len, rr, i + 152);
	S[ 4] ^= toLane64(message, len, rr, i + 160);
	S[ 9] ^= toLane64(message, len, rr, i + 168);
	S[14] ^= toLane64(message, len, rr, i + 176);
	S[19] ^= toLane64(message, len, rr, i + 184);
	S[24] ^= toLane64(message, len, rr, i + 192);
	keccakF(S);
      }
  else
    for (i = 0; i < len; i += rr)
      {
	S[ 0] ^= toLane(message, len, rr, ww, i +  0    );
	S[ 5] ^= toLane(message, len, rr, ww, i +      w);
	S[10] ^= toLane(message, len, rr, ww, i +  2 * w);
	S[15] ^= toLane(message, len, rr, ww, i +  3 * w);
	S[20] ^= toLane(message, len, rr, ww, i +  4 * w);
	S[ 1] ^= toLane(message, len, rr, ww, i +  5 * w);
	S[ 6] ^= toLane(message, len, rr, ww, i +  6 * w);
	S[11] ^= toLane(message, len, rr, ww, i +  7 * w);
	S[16] ^= toLane(message, len, rr, ww, i +  8 * w);
	S[21] ^= toLane(message, len, rr, ww, i +  9 * w);
	S[ 2] ^= toLane(message, len, rr, ww, i + 10 * w);
	S[ 7] ^= toLane(message, len, rr, ww, i + 11 * w);
	S[12] ^= toLane(message, len, rr, ww, i + 12 * w);
	S[17] ^= toLane(message, len, rr, ww, i + 13 * w);
	S[22] ^= toLane(message, len, rr, ww, i + 14 * w);
	S[ 3] ^= toLane(message, len, rr, ww, i + 15 * w);
	S[ 8] ^= toLane(message, len, rr, ww, i + 16 * w);
	S[13] ^= toLane(message, len, rr, ww, i + 17 * w);
	S[18] ^= toLane(message, len, rr, ww, i + 18 * w);
	S[23] ^= toLane(message, len, rr, ww, i + 19 * w);
	S[ 4] ^= toLane(message, len, rr, ww, i + 20 * w);
	S[ 9] ^= toLane(message, len, rr, ww, i + 21 * w);
	S[14] ^= toLane(message, len, rr, ww, i + 22 * w);
	S[19] ^= toLane(message, len, rr, ww, i + 23 * w);
	S[24] ^= toLane(message, len, rr, ww, i + 24 * w);
	keccakF(S);
      }
}
    

/**
 * Squeeze the Keccak sponge
 */
extern byte* digest()
{
  return digest(null);
}


/**
 * Absorb the last part of the message and squeeze the Keccak sponge
 * 
 * @param  msg     The rest of the message
 * @param  msglen  The length of the partial message
 */
extern byte* digest(byte* msg, long msglen)
{
  byte* message;
  if ((msg == null) || (msglen == 0))
    message = pad10star1(M, mptr, r);
  else
    {
      if (mptr + msglen > M.length)
	System.arraycopy(M, 0, M = new byte[M.length + msglen], 0, mptr);
      arraycopy(msg, 0, M, mptr, msglen);
      message = pad10star1(M, mptr + msglen, r);
    }
  M = null;
  long len = message.length;
  byte* rc = (byte*)malloc((n + 7) >> 3);
  long ptr = 0;
  
  long rr = r >> 3;
  long nn = n >> 3;
  long ww = w >> 3;
  long i;
  
  /* Absorbing phase */
  if (ww == 8)
    for (i = 0; i < len; i += rr)
      {
	S[ 0] ^= toLane64(message, len, rr, i + 0);
	S[ 5] ^= toLane64(message, len, rr, i + 8);
	S[10] ^= toLane64(message, len, rr, i + 16);
	S[15] ^= toLane64(message, len, rr, i + 24);
	S[20] ^= toLane64(message, len, rr, i + 32);
	S[ 1] ^= toLane64(message, len, rr, i + 40);
	S[ 6] ^= toLane64(message, len, rr, i + 48);
	S[11] ^= toLane64(message, len, rr, i + 56);
	S[16] ^= toLane64(message, len, rr, i + 64);
	S[21] ^= toLane64(message, len, rr, i + 72);
	S[ 2] ^= toLane64(message, len, rr, i + 80);
	S[ 7] ^= toLane64(message, len, rr, i + 88);
	S[12] ^= toLane64(message, len, rr, i + 96);
	S[17] ^= toLane64(message, len, rr, i + 104);
	S[22] ^= toLane64(message, len, rr, i + 112);
	S[ 3] ^= toLane64(message, len, rr, i + 120);
	S[ 8] ^= toLane64(message, len, rr, i + 128);
	S[13] ^= toLane64(message, len, rr, i + 136);
	S[18] ^= toLane64(message, len, rr, i + 144);
	S[23] ^= toLane64(message, len, rr, i + 152);
	S[ 4] ^= toLane64(message, len, rr, i + 160);
	S[ 9] ^= toLane64(message, len, rr, i + 168);
	S[14] ^= toLane64(message, len, rr, i + 176);
	S[19] ^= toLane64(message, len, rr, i + 184);
	S[24] ^= toLane64(message, len, rr, i + 192);
	keccakF(S);
      }
  else
    for (i = 0; i < len; i += rr)
      {
	S[ 0] ^= toLane(message, len, rr, ww, i +  0    );
	S[ 5] ^= toLane(message, len, rr, ww, i +      w);
	S[10] ^= toLane(message, len, rr, ww, i +  2 * w);
	S[15] ^= toLane(message, len, rr, ww, i +  3 * w);
	S[20] ^= toLane(message, len, rr, ww, i +  4 * w);
	S[ 1] ^= toLane(message, len, rr, ww, i +  5 * w);
	S[ 6] ^= toLane(message, len, rr, ww, i +  6 * w);
	S[11] ^= toLane(message, len, rr, ww, i +  7 * w);
	S[16] ^= toLane(message, len, rr, ww, i +  8 * w);
	S[21] ^= toLane(message, len, rr, ww, i +  9 * w);
	S[ 2] ^= toLane(message, len, rr, ww, i + 10 * w);
	S[ 7] ^= toLane(message, len, rr, ww, i + 11 * w);
	S[12] ^= toLane(message, len, rr, ww, i + 12 * w);
	S[17] ^= toLane(message, len, rr, ww, i + 13 * w);
	S[22] ^= toLane(message, len, rr, ww, i + 14 * w);
	S[ 3] ^= toLane(message, len, rr, ww, i + 15 * w);
	S[ 8] ^= toLane(message, len, rr, ww, i + 16 * w);
	S[13] ^= toLane(message, len, rr, ww, i + 17 * w);
	S[18] ^= toLane(message, len, rr, ww, i + 18 * w);
	S[23] ^= toLane(message, len, rr, ww, i + 19 * w);
	S[ 4] ^= toLane(message, len, rr, ww, i + 20 * w);
	S[ 9] ^= toLane(message, len, rr, ww, i + 21 * w);
	S[14] ^= toLane(message, len, rr, ww, i + 22 * w);
	S[19] ^= toLane(message, len, rr, ww, i + 23 * w);
	S[24] ^= toLane(message, len, rr, ww, i + 24 * w);
	keccakF(S);
      }
  
  /* Squeezing phase */
  long olen = n;
  long j = 0;
  long ni = min(25, rr);
  while (olen > 0)
    {
      long i = 0;
      while ((i < ni) && (j < nn))
	{
	  llong v = S[(i % 5) * 5 + i / 5];
	  for (long _ = 0; _ < ww; _++)
	    {
	      if (j < nn)
		{
		  rc[ptr] = (byte)v;
		  ptr += 1;
		}
	      v >>= 8;
	      j += 1;
	    }
	  i += 1;
	}
      olen -= r;
      if (olen > 0)
	keccakF(S);
    }
  return rc;
}