/**
* sha3sum – SHA-3 (Keccak) checksum calculator
*
* Copyright © 2013 Mattias Andrée (maandree@member.fsf.org)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "sha3.h"
#if __x86_64__ || __ppc64__
#define llong long int
#else
#define llong long long int
#endif
#define null 0
#define byte char
#define boolean long
#define true 1
#define false 0
#define min(X, Y) ((X) < (Y) ? (X) : (Y))
#define arraycopy(src, soff, dest, doff, length) {long copyi; for (copyi = 0; copyi < length; copyi++) dest[copyi + doff] = src[copyi + soff];}
#define revarraycopy(src, soff, dest, doff, length) {long copyi; for (copyi = length - 1; copyi >= 0; copyi--) dest[copyi + doff] = src[copyi + soff];}
/**
* Round contants
*/
static const llong RC[] = {
0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L,
0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L,
0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL,
0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L,
0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL,
0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L};
/**
* Keccak-f round temporary
*/
static llong B[25];
/**
* Keccak-f round temporary
*/
static llong C[5];
/**
* The bitrate
*/
static long r = 0;
/**
* The capacity
*/
static long c = 0;
/**
* The output size
*/
static long n = 0;
/**
* The state size
*/
static long b = 0;
/**
* The word size
*/
static long w = 0;
/**
* The word mask
*/
static llong wmod = 0;
/**
* ℓ, the binary logarithm of the word size
*/
static long l = 0;
/**
* 12 + 2ℓ, the number of rounds
*/
static long nr = 0;
/**
* The current state
*/
static llong* S = null;
/**
* Left over water to fill the sponge with at next update
*/
static byte* M = null;
/**
* Pointer for {@link #M}
*/
static long mptr = 0;
/**
* Size of {@link #M}
*/
static long mlen = 0;
/**
* Rotate a word
*
* @param x The value to rotate
* @param n Rotation steps, may not be 0
* @return The value rotated
*/
static llong rotate(llong x, long n)
{
llong m = n % w;
return ((x >> (w - m)) + (x << m)) & wmod;
}
/**
* Rotate a 64-bit word
*
* @param x The value to rotate
* @param n Rotation steps, may not be 0
* @return The value rotated
*/
static llong rotate64(llong x, long n)
{
return (llong)((unsigned llong)x >> (w - n)) + (x << n);
}
/**
* Binary logarithm
*
* @param x The value of which to calculate the binary logarithm
* @return The binary logarithm
*/
static long lb(long x)
{
return (((x & 0xFF00) == 0 ? 0 : 8) +
((x & 0xF0F0) == 0 ? 0 : 4)) +
(((x & 0xCCCC) == 0 ? 0 : 2) +
((x & 0xAAAA) == 0 ? 0 : 1));
}
/**
* Perform one round of computation
*
* @param A The current state
* @param rc Round constant
*/
static void keccakFRound(llong* A, llong rc)
{
llong da, db, dc, dd, de;
long i, j;
/* θ step (step 1 of 3) */
for (i = 0, j = 0; i < 5; i++, j += 5)
C[i] = (A[j] ^ A[j + 1]) ^ (A[j + 2] ^ A[j + 3]) ^ A[j + 4];
if (w == 64)
{
/* ρ and π steps, with last two part of θ */
B[0] = A[ 0] ^ (da = C[4] ^ rotate64(C[1], 1));
B[1] = rotate64(A[15] ^ (dd = C[2] ^ rotate64(C[4], 1)), 28);
B[2] = rotate64(A[ 5] ^ (db = C[0] ^ rotate64(C[2], 1)), 1);
B[3] = rotate64(A[20] ^ (de = C[3] ^ rotate64(C[0], 1)), 27);
B[4] = rotate64(A[10] ^ (dc = C[1] ^ rotate64(C[3], 1)), 62);
B[5] = rotate64(A[ 6] ^ db, 44);
B[6] = rotate64(A[21] ^ de, 20);
B[7] = rotate64(A[11] ^ dc, 6);
B[8] = rotate64(A[ 1] ^ da, 36);
B[9] = rotate64(A[16] ^ dd, 55);
B[10] = rotate64(A[12] ^ dc, 43);
B[11] = rotate64(A[ 2] ^ da, 3);
B[12] = rotate64(A[17] ^ dd, 25);
B[13] = rotate64(A[ 7] ^ db, 10);
B[14] = rotate64(A[22] ^ de, 39);
B[15] = rotate64(A[18] ^ dd, 21);
B[16] = rotate64(A[ 8] ^ db, 45);
B[17] = rotate64(A[23] ^ de, 8);
B[18] = rotate64(A[13] ^ dc, 15);
B[19] = rotate64(A[ 3] ^ da, 41);
B[20] = rotate64(A[24] ^ de, 14);
B[21] = rotate64(A[14] ^ dc, 61);
B[22] = rotate64(A[ 4] ^ da, 18);
B[23] = rotate64(A[19] ^ dd, 56);
B[24] = rotate64(A[ 9] ^ db, 2);
}
else
{
/* ρ and π steps, with last two part of θ */
B[0] = A[ 0] ^ (da = C[4] ^ rotate(C[1], 1));
B[1] = rotate(A[15] ^ (dd = C[2] ^ rotate(C[4], 1)), 28);
B[2] = rotate(A[ 5] ^ (db = C[0] ^ rotate(C[2], 1)), 1);
B[3] = rotate(A[20] ^ (de = C[3] ^ rotate(C[0], 1)), 27);
B[4] = rotate(A[10] ^ (dc = C[1] ^ rotate(C[3], 1)), 62);
B[5] = rotate(A[ 6] ^ db, 44);
B[6] = rotate(A[21] ^ de, 20);
B[7] = rotate(A[11] ^ dc, 6);
B[8] = rotate(A[ 1] ^ da, 36);
B[9] = rotate(A[16] ^ dd, 55);
B[10] = rotate(A[12] ^ dc, 43);
B[11] = rotate(A[ 2] ^ da, 3);
B[12] = rotate(A[17] ^ dd, 25);
B[13] = rotate(A[ 7] ^ db, 10);
B[14] = rotate(A[22] ^ de, 39);
B[15] = rotate(A[18] ^ dd, 21);
B[16] = rotate(A[ 8] ^ db, 45);
B[17] = rotate(A[23] ^ de, 8);
B[18] = rotate(A[13] ^ dc, 15);
B[19] = rotate(A[ 3] ^ da, 41);
B[20] = rotate(A[24] ^ de, 14);
B[21] = rotate(A[14] ^ dc, 61);
B[22] = rotate(A[ 4] ^ da, 18);
B[23] = rotate(A[19] ^ dd, 56);
B[24] = rotate(A[ 9] ^ db, 2);
}
/* ξ step */
for (i = 0; i < 15; i++)
A[i ] = B[i ] ^ ((~(B[i + 5])) & B[i + 10]);
for (i = 0; i < 5; i++)
{
A[i + 15] = B[i + 15] ^ ((~(B[i + 20])) & B[i ]);
A[i + 20] = B[i + 20] ^ ((~(B[i ])) & B[i + 5]);
}
/* ι step */
A[0] ^= rc;
}
/**
* Perform Keccak-f function
*
* @param A The current state
*/
static void keccakF(llong* A)
{
long i;
if (nr == 24)
for (i = 0; i < nr; i++)
keccakFRound(A, RC[i]);
else
for (i = 0; i < nr; i++)
keccakFRound(A, RC[i] & wmod);
}
/**
* Convert a chunk of byte:s to a word
*
* @param message The message
* @param msglen The length of the message
* @param rr Bitrate in bytes
* @param ww Word size in bytes
* @param off The offset in the message
* @return Lane
*/
static llong toLane(byte* message, long msglen, long rr, long ww, long off)
{
llong rc = 0;
long n = min(msglen, rr), i;
for (i = off + ww - 1; i >= off; i--)
rc = (rc << 8) | ((i < n) ? (llong)(message[i] & 255) : 0L);
return rc;
}
/**
* Convert a chunk of byte:s to a 64-bit word
*
* @param message The message
* @param msglen The length of the message
* @param rr Bitrate in bytes
* @param off The offset in the message
* @return Lane
*/
static llong toLane64(byte* message, long msglen, long rr, long off)
{
long n = min(msglen, rr);
return ((off + 7 < n) ? ((llong)(message[off + 7] & 255) << 56) : 0L) |
((off + 6 < n) ? ((llong)(message[off + 6] & 255) << 48) : 0L) |
((off + 5 < n) ? ((llong)(message[off + 5] & 255) << 40) : 0L) |
((off + 4 < n) ? ((llong)(message[off + 4] & 255) << 32) : 0L) |
((off + 3 < n) ? ((llong)(message[off + 3] & 255) << 24) : 0L) |
((off + 2 < n) ? ((llong)(message[off + 2] & 255) << 16) : 0L) |
((off + 1 < n) ? ((llong)(message[off + 1] & 255) << 8) : 0L) |
((off < n) ? ((llong)(message[off] & 255)) : 0L);
}
/**
* pad 10*1
*
* @param msg The message to pad
* @param len The length of the message
* @param r The bitrate
* @param outlen The length of the padded message (out parameter)
* @return The message padded
*/
static byte* pad10star1(byte* msg, long len, long r, long* outlen)
{
byte* message;
long nrf = len >> 3;
long nbrf = len & 7;
long ll = len % r;
long i;
byte b = (byte)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)));
if ((r - 8 <= ll) && (ll <= r - 2))
{
message = (byte*)malloc(len = nrf + 1);
message[nrf] = (byte)(b ^ 128);
}
else
{
len = (nrf + 1) << 3;
len = ((len - (len % r) + (r - 8)) >> 3) + 1;
message = (byte*)malloc(len);
message[nrf] = b;
for (i = nrf + 1; i < len; i++)
message[i] = 0;
message[len - 1] = -128;
}
arraycopy(msg, 0, message, 0, nrf);
*outlen = len;
return message;
}
/**
* Initialise Keccak sponge
*
* @param bitrate The bitrate
* @param capacity The capacity
* @param output The output size
*/
extern void initialise(long bitrate, long capacity, long output)
{
long i;
r = bitrate;
n = output;
c = capacity;
b = r + c;
w = b / 25;
l = lb(w);
nr = 12 + (l << 1);
wmod = w == 64 ? -1LL ? (1LL << w) - 1LL;
S = (llong*)malloc(25 * sizeof(llong));
M = (byte*)malloc(mlen = (r * b) >> 2);
mptr = 0;
for (i = 0; i < 25; i++)
*(S + i) = 0;
}
/**
* Dispose of the Keccak sponge
*/
extern void dispose()
{
if (S != null)
{
free(S);
S = null;
}
if (M != null)
{
free(M);
M = null;
}
}
/**
* Absorb the more of the message message to the Keccak sponge
*
* @param msg The partial message
* @param msglen The length of the partial message
*/
extern void update(byte* msg, long msglen)
{
long rr = r >> 3;
long ww = w >> 3;
long i, len;
byte* message;
if (mptr + msglen > mlen)
{
byte* buf = (byte*)malloc(mlen = (mlen + msglen) << 1);
arraycopy(M, 0, buf, 0, mptr);
free(M);
M = buf;
}
arraycopy(msg, 0, M, mptr, msglen);
len = mptr += msglen;
len -= len % ((r * b) >> 3);
message = (byte*)malloc(len);
arraycopy(M, 0, message, 0, len);
mptr -= len;
revarraycopy(M, len, M, 0, mptr);
/* Absorbing phase */
if (ww == 8)
for (i = 0; i < len; i += rr)
{
S[ 0] ^= toLane64(message, len, rr, i + 0);
S[ 5] ^= toLane64(message, len, rr, i + 8);
S[10] ^= toLane64(message, len, rr, i + 16);
S[15] ^= toLane64(message, len, rr, i + 24);
S[20] ^= toLane64(message, len, rr, i + 32);
S[ 1] ^= toLane64(message, len, rr, i + 40);
S[ 6] ^= toLane64(message, len, rr, i + 48);
S[11] ^= toLane64(message, len, rr, i + 56);
S[16] ^= toLane64(message, len, rr, i + 64);
S[21] ^= toLane64(message, len, rr, i + 72);
S[ 2] ^= toLane64(message, len, rr, i + 80);
S[ 7] ^= toLane64(message, len, rr, i + 88);
S[12] ^= toLane64(message, len, rr, i + 96);
S[17] ^= toLane64(message, len, rr, i + 104);
S[22] ^= toLane64(message, len, rr, i + 112);
S[ 3] ^= toLane64(message, len, rr, i + 120);
S[ 8] ^= toLane64(message, len, rr, i + 128);
S[13] ^= toLane64(message, len, rr, i + 136);
S[18] ^= toLane64(message, len, rr, i + 144);
S[23] ^= toLane64(message, len, rr, i + 152);
S[ 4] ^= toLane64(message, len, rr, i + 160);
S[ 9] ^= toLane64(message, len, rr, i + 168);
S[14] ^= toLane64(message, len, rr, i + 176);
S[19] ^= toLane64(message, len, rr, i + 184);
S[24] ^= toLane64(message, len, rr, i + 192);
keccakF(S);
}
else
for (i = 0; i < len; i += rr)
{
S[ 0] ^= toLane(message, len, rr, ww, i + 0 );
S[ 5] ^= toLane(message, len, rr, ww, i + w);
S[10] ^= toLane(message, len, rr, ww, i + 2 * w);
S[15] ^= toLane(message, len, rr, ww, i + 3 * w);
S[20] ^= toLane(message, len, rr, ww, i + 4 * w);
S[ 1] ^= toLane(message, len, rr, ww, i + 5 * w);
S[ 6] ^= toLane(message, len, rr, ww, i + 6 * w);
S[11] ^= toLane(message, len, rr, ww, i + 7 * w);
S[16] ^= toLane(message, len, rr, ww, i + 8 * w);
S[21] ^= toLane(message, len, rr, ww, i + 9 * w);
S[ 2] ^= toLane(message, len, rr, ww, i + 10 * w);
S[ 7] ^= toLane(message, len, rr, ww, i + 11 * w);
S[12] ^= toLane(message, len, rr, ww, i + 12 * w);
S[17] ^= toLane(message, len, rr, ww, i + 13 * w);
S[22] ^= toLane(message, len, rr, ww, i + 14 * w);
S[ 3] ^= toLane(message, len, rr, ww, i + 15 * w);
S[ 8] ^= toLane(message, len, rr, ww, i + 16 * w);
S[13] ^= toLane(message, len, rr, ww, i + 17 * w);
S[18] ^= toLane(message, len, rr, ww, i + 18 * w);
S[23] ^= toLane(message, len, rr, ww, i + 19 * w);
S[ 4] ^= toLane(message, len, rr, ww, i + 20 * w);
S[ 9] ^= toLane(message, len, rr, ww, i + 21 * w);
S[14] ^= toLane(message, len, rr, ww, i + 22 * w);
S[19] ^= toLane(message, len, rr, ww, i + 23 * w);
S[24] ^= toLane(message, len, rr, ww, i + 24 * w);
keccakF(S);
}
free(message);
}
/**
* Absorb the last part of the message and squeeze the Keccak sponge
*
* @param msg The rest of the message, may be {@code null}
* @param msglen The length of the partial message
*/
extern byte* digest(byte* msg, long msglen)
{
byte* message;
byte* rc;
long rr = r >> 3, len;
long nn = n >> 3, olen;
long ww = w >> 3, ni;
long i, j = 0, ptr = 0, _;
if ((msg == null) || (msglen == 0))
message = pad10star1(M, mptr, r, &len);
else
{
if (mptr + msglen > mlen)
{
byte* buf = (byte*)malloc(mlen += msglen);
arraycopy(M, 0, buf, 0, mptr);
free(M);
M = buf;
}
arraycopy(msg, 0, M, mptr, msglen);
message = pad10star1(M, mptr + msglen, r, &len);
}
free(M);
M = null;
rc = (byte*)malloc((n + 7) >> 3);
/* Absorbing phase */
if (ww == 8)
for (i = 0; i < len; i += rr)
{
S[ 0] ^= toLane64(message, len, rr, i + 0);
S[ 5] ^= toLane64(message, len, rr, i + 8);
S[10] ^= toLane64(message, len, rr, i + 16);
S[15] ^= toLane64(message, len, rr, i + 24);
S[20] ^= toLane64(message, len, rr, i + 32);
S[ 1] ^= toLane64(message, len, rr, i + 40);
S[ 6] ^= toLane64(message, len, rr, i + 48);
S[11] ^= toLane64(message, len, rr, i + 56);
S[16] ^= toLane64(message, len, rr, i + 64);
S[21] ^= toLane64(message, len, rr, i + 72);
S[ 2] ^= toLane64(message, len, rr, i + 80);
S[ 7] ^= toLane64(message, len, rr, i + 88);
S[12] ^= toLane64(message, len, rr, i + 96);
S[17] ^= toLane64(message, len, rr, i + 104);
S[22] ^= toLane64(message, len, rr, i + 112);
S[ 3] ^= toLane64(message, len, rr, i + 120);
S[ 8] ^= toLane64(message, len, rr, i + 128);
S[13] ^= toLane64(message, len, rr, i + 136);
S[18] ^= toLane64(message, len, rr, i + 144);
S[23] ^= toLane64(message, len, rr, i + 152);
S[ 4] ^= toLane64(message, len, rr, i + 160);
S[ 9] ^= toLane64(message, len, rr, i + 168);
S[14] ^= toLane64(message, len, rr, i + 176);
S[19] ^= toLane64(message, len, rr, i + 184);
S[24] ^= toLane64(message, len, rr, i + 192);
keccakF(S);
}
else
for (i = 0; i < len; i += rr)
{
S[ 0] ^= toLane(message, len, rr, ww, i + 0 );
S[ 5] ^= toLane(message, len, rr, ww, i + w);
S[10] ^= toLane(message, len, rr, ww, i + 2 * w);
S[15] ^= toLane(message, len, rr, ww, i + 3 * w);
S[20] ^= toLane(message, len, rr, ww, i + 4 * w);
S[ 1] ^= toLane(message, len, rr, ww, i + 5 * w);
S[ 6] ^= toLane(message, len, rr, ww, i + 6 * w);
S[11] ^= toLane(message, len, rr, ww, i + 7 * w);
S[16] ^= toLane(message, len, rr, ww, i + 8 * w);
S[21] ^= toLane(message, len, rr, ww, i + 9 * w);
S[ 2] ^= toLane(message, len, rr, ww, i + 10 * w);
S[ 7] ^= toLane(message, len, rr, ww, i + 11 * w);
S[12] ^= toLane(message, len, rr, ww, i + 12 * w);
S[17] ^= toLane(message, len, rr, ww, i + 13 * w);
S[22] ^= toLane(message, len, rr, ww, i + 14 * w);
S[ 3] ^= toLane(message, len, rr, ww, i + 15 * w);
S[ 8] ^= toLane(message, len, rr, ww, i + 16 * w);
S[13] ^= toLane(message, len, rr, ww, i + 17 * w);
S[18] ^= toLane(message, len, rr, ww, i + 18 * w);
S[23] ^= toLane(message, len, rr, ww, i + 19 * w);
S[ 4] ^= toLane(message, len, rr, ww, i + 20 * w);
S[ 9] ^= toLane(message, len, rr, ww, i + 21 * w);
S[14] ^= toLane(message, len, rr, ww, i + 22 * w);
S[19] ^= toLane(message, len, rr, ww, i + 23 * w);
S[24] ^= toLane(message, len, rr, ww, i + 24 * w);
keccakF(S);
}
free(message);
/* Squeezing phase */
olen = n;
ni = min(25, rr);
while (olen > 0)
{
i = 0;
while ((i < ni) && (j < nn))
{
llong v = S[(i % 5) * 5 + i / 5];
for (_ = 0; _ < ww; _++)
{
if (j < nn)
{
rc[ptr] = (byte)v;
ptr += 1;
}
v >>= 8;
j += 1;
}
i += 1;
}
olen -= r;
if (olen > 0)
keccakF(S);
}
return rc;
}