/**
* sha3sum – SHA-3 (Keccak) checksum calculator
*
* Copyright © 2013 Mattias Andrée (maandree@member.fsf.org)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* SHA-3/Keccak hash algorithm implementation
*
* @author Mattias Andrée <a href="mailto:maandree@member.fsf.org">maandree@member.fsf.org</a>
*/
public class SHA3
{
/**
* Round contants
*/
private static final long[] RC = {
0x0000000000000001L, 0x0000000000008082L, 0x800000000000808AL, 0x8000000080008000L,
0x000000000000808BL, 0x0000000080000001L, 0x8000000080008081L, 0x8000000000008009L,
0x000000000000008AL, 0x0000000000000088L, 0x0000000080008009L, 0x000000008000000AL,
0x000000008000808BL, 0x800000000000008BL, 0x8000000000008089L, 0x8000000000008003L,
0x8000000000008002L, 0x8000000000000080L, 0x000000000000800AL, 0x800000008000000AL,
0x8000000080008081L, 0x8000000000008080L, 0x0000000080000001L, 0x8000000080008008L};
/**
* Keccak-f round temporary
*/
private static long[] B = new long[25];
/**
* Keccak-f round temporary
*/
private static long[] C = new long[5];
/**
* The bitrate
*/
private static int r = 0;
/**
* The capacity
*/
private static int c = 0;
/**
* The output size
*/
private static int n = 0;
/**
* The state size
*/
private static int b = 0;
/**
* The word size
*/
private static int w = 0;
/**
* The word mask
*/
private static long wmod = 0;
/**
* ℓ, the binary logarithm of the word size
*/
private static int l = 0;
/**
* 12 + 2ℓ, the number of rounds
*/
private static int nr = 0;
/**
* The current state
*/
private static long[] S = null;
/**
* Left over water to fill the sponge with at next update
*/
private static byte[] M = null;
/**
* Pointer for {@link #M}
*/
private static int mptr = 0;
/**
* Hidden constructor
*/
private SHA3()
{
// Inhibit instansiation
}
/**
* Rotate a word
*
* @param x The value to rotate
* @param n Rotation steps
* @return The value rotated
*/
private static long rotate(long x, int n)
{
long m = n % SHA3.w;
return (x >>> (SHA3.w - m)) + (x << m);
}
/**
* Rotate a 64-bit word
*
* @param x The value to rotate
* @param n Rotation steps
* @return The value rotated
*/
private static long rotate64(long x, int n)
{
return (x >> (SHA3.w - n)) + (x << n);
}
/**
* Binary logarithm
*
* @param x The value of which to calculate the binary logarithm
* @return The binary logarithm
*/
private static int lb(int x)
{
return (((x & 0xFF00) == 0 ? 0 : 8) +
((x & 0xF0F0) == 0 ? 0 : 4)) +
(((x & 0xCCCC) == 0 ? 0 : 2) +
((x & 0xAAAA) == 0 ? 0 : 1));
}
/**
* Perform one round of computation
*
* @param A The current state
* @param rc Round constant
*/
private static void keccakFRound(long[] A, long rc)
{
if (SHA3.w == 64)
{
/* θ step (step 1 and 2 of 3) */
SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4];
SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14];
long db = SHA3.C[0] ^ SHA3.rotate64(SHA3.C[2], 1);
SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24];
long dd = SHA3.C[2] ^ SHA3.rotate64(SHA3.C[4], 1);
SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9];
long da = SHA3.C[4] ^ SHA3.rotate64(SHA3.C[1], 1);
SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19];
long dc = SHA3.C[1] ^ SHA3.rotate64(SHA3.C[3], 1);
long de = SHA3.C[3] ^ SHA3.rotate64(SHA3.C[0], 1);
/* ρ and π steps, with last part of θ */
SHA3.B[0] = SHA3.rotate64(A[0] ^ da, 0);
SHA3.B[1] = SHA3.rotate64(A[15] ^ dd, 28);
SHA3.B[2] = SHA3.rotate64(A[5] ^ db, 1);
SHA3.B[3] = SHA3.rotate64(A[20] ^ de, 27);
SHA3.B[4] = SHA3.rotate64(A[10] ^ dc, 62);
SHA3.B[5] = SHA3.rotate64(A[6] ^ db, 44);
SHA3.B[6] = SHA3.rotate64(A[21] ^ de, 20);
SHA3.B[7] = SHA3.rotate64(A[11] ^ dc, 6);
SHA3.B[8] = SHA3.rotate64(A[1] ^ da, 36);
SHA3.B[9] = SHA3.rotate64(A[16] ^ dd, 55);
SHA3.B[10] = SHA3.rotate64(A[12] ^ dc, 43);
SHA3.B[11] = SHA3.rotate64(A[2] ^ da, 3);
SHA3.B[12] = SHA3.rotate64(A[17] ^ dd, 25);
SHA3.B[13] = SHA3.rotate64(A[7] ^ db, 10);
SHA3.B[14] = SHA3.rotate64(A[22] ^ de, 39);
SHA3.B[15] = SHA3.rotate64(A[18] ^ dd, 21);
SHA3.B[16] = SHA3.rotate64(A[8] ^ db, 45);
SHA3.B[17] = SHA3.rotate64(A[23] ^ de, 8);
SHA3.B[18] = SHA3.rotate64(A[13] ^ dc, 15);
SHA3.B[19] = SHA3.rotate64(A[3] ^ da, 41);
SHA3.B[20] = SHA3.rotate64(A[24] ^ de, 14);
SHA3.B[21] = SHA3.rotate64(A[14] ^ dc, 61);
SHA3.B[22] = SHA3.rotate64(A[4] ^ da, 18);
SHA3.B[23] = SHA3.rotate64(A[19] ^ dd, 56);
SHA3.B[24] = SHA3.rotate64(A[9] ^ db, 2);
}
else
{
/* θ step (step 1 and 2 of 3) */
SHA3.C[0] = (A[0] ^ A[1]) ^ (A[2] ^ A[3]) ^ A[4];
SHA3.C[2] = (A[10] ^ A[11]) ^ (A[12] ^ A[13]) ^ A[14];
long db = SHA3.C[0] ^ SHA3.rotate(SHA3.C[2], 1);
SHA3.C[4] = (A[20] ^ A[21]) ^ (A[22] ^ A[23]) ^ A[24];
long dd = SHA3.C[2] ^ SHA3.rotate(SHA3.C[4], 1);
SHA3.C[1] = (A[5] ^ A[6]) ^ (A[7] ^ A[8]) ^ A[9];
long da = SHA3.C[4] ^ SHA3.rotate(SHA3.C[1], 1);
SHA3.C[3] = (A[15] ^ A[16]) ^ (A[17] ^ A[18]) ^ A[19];
long dc = SHA3.C[1] ^ SHA3.rotate(SHA3.C[3], 1);
long de = SHA3.C[3] ^ SHA3.rotate(SHA3.C[0], 1);
/*ρ and π steps, with last part of θ */
SHA3.B[0] = SHA3.rotate(A[0] ^ da, 0);
SHA3.B[1] = SHA3.rotate(A[15] ^ dd, 28);
SHA3.B[2] = SHA3.rotate(A[5] ^ db, 1);
SHA3.B[3] = SHA3.rotate(A[20] ^ de, 27);
SHA3.B[4] = SHA3.rotate(A[10] ^ dc, 62);
SHA3.B[5] = SHA3.rotate(A[6] ^ db, 44);
SHA3.B[6] = SHA3.rotate(A[21] ^ de, 20);
SHA3.B[7] = SHA3.rotate(A[11] ^ dc, 6);
SHA3.B[8] = SHA3.rotate(A[1] ^ da, 36);
SHA3.B[9] = SHA3.rotate(A[16] ^ dd, 55);
SHA3.B[10] = SHA3.rotate(A[12] ^ dc, 43);
SHA3.B[11] = SHA3.rotate(A[2] ^ da, 3);
SHA3.B[12] = SHA3.rotate(A[17] ^ dd, 25);
SHA3.B[13] = SHA3.rotate(A[7] ^ db, 10);
SHA3.B[14] = SHA3.rotate(A[22] ^ de, 39);
SHA3.B[15] = SHA3.rotate(A[18] ^ dd, 21);
SHA3.B[16] = SHA3.rotate(A[8] ^ db, 45);
SHA3.B[17] = SHA3.rotate(A[23] ^ de, 8);
SHA3.B[18] = SHA3.rotate(A[13] ^ dc, 15);
SHA3.B[19] = SHA3.rotate(A[3] ^ da, 41);
SHA3.B[20] = SHA3.rotate(A[24] ^ de, 14);
SHA3.B[21] = SHA3.rotate(A[14] ^ dc, 61);
SHA3.B[22] = SHA3.rotate(A[4] ^ da, 18);
SHA3.B[23] = SHA3.rotate(A[19] ^ dd, 56);
SHA3.B[24] = SHA3.rotate(A[9] ^ db, 2);
}
/* ξ step */
A[0] = SHA3.B[0] ^ ((~(SHA3.B[5])) & SHA3.B[10]);
A[1] = SHA3.B[1] ^ ((~(SHA3.B[6])) & SHA3.B[11]);
A[2] = SHA3.B[2] ^ ((~(SHA3.B[7])) & SHA3.B[12]);
A[3] = SHA3.B[3] ^ ((~(SHA3.B[8])) & SHA3.B[13]);
A[4] = SHA3.B[4] ^ ((~(SHA3.B[9])) & SHA3.B[14]);
A[5] = SHA3.B[5] ^ ((~(SHA3.B[10])) & SHA3.B[15]);
A[6] = SHA3.B[6] ^ ((~(SHA3.B[11])) & SHA3.B[16]);
A[7] = SHA3.B[7] ^ ((~(SHA3.B[12])) & SHA3.B[17]);
A[8] = SHA3.B[8] ^ ((~(SHA3.B[13])) & SHA3.B[18]);
A[9] = SHA3.B[9] ^ ((~(SHA3.B[14])) & SHA3.B[19]);
A[10] = SHA3.B[10] ^ ((~(SHA3.B[15])) & SHA3.B[20]);
A[11] = SHA3.B[11] ^ ((~(SHA3.B[16])) & SHA3.B[21]);
A[12] = SHA3.B[12] ^ ((~(SHA3.B[17])) & SHA3.B[22]);
A[13] = SHA3.B[13] ^ ((~(SHA3.B[18])) & SHA3.B[23]);
A[14] = SHA3.B[14] ^ ((~(SHA3.B[19])) & SHA3.B[24]);
A[15] = SHA3.B[15] ^ ((~(SHA3.B[20])) & SHA3.B[0]);
A[16] = SHA3.B[16] ^ ((~(SHA3.B[21])) & SHA3.B[1]);
A[17] = SHA3.B[17] ^ ((~(SHA3.B[22])) & SHA3.B[2]);
A[18] = SHA3.B[18] ^ ((~(SHA3.B[23])) & SHA3.B[3]);
A[19] = SHA3.B[19] ^ ((~(SHA3.B[24])) & SHA3.B[4]);
A[20] = SHA3.B[20] ^ ((~(SHA3.B[0])) & SHA3.B[5]);
A[21] = SHA3.B[21] ^ ((~(SHA3.B[1])) & SHA3.B[6]);
A[22] = SHA3.B[22] ^ ((~(SHA3.B[2])) & SHA3.B[7]);
A[23] = SHA3.B[23] ^ ((~(SHA3.B[3])) & SHA3.B[8]);
A[24] = SHA3.B[24] ^ ((~(SHA3.B[4])) & SHA3.B[9]);
/* ι step */
A[0] ^= rc;
}
/**
* Perform Keccak-f function
*
* @param A The current state
*/
private static void keccakF(long[] A)
{
if (SHA3.nr == 24)
{
SHA3.keccakFRound(A, 0x0000000000000001L);
SHA3.keccakFRound(A, 0x0000000000008082L);
SHA3.keccakFRound(A, 0x800000000000808AL);
SHA3.keccakFRound(A, 0x8000000080008000L);
SHA3.keccakFRound(A, 0x000000000000808BL);
SHA3.keccakFRound(A, 0x0000000080000001L);
SHA3.keccakFRound(A, 0x8000000080008081L);
SHA3.keccakFRound(A, 0x8000000000008009L);
SHA3.keccakFRound(A, 0x000000000000008AL);
SHA3.keccakFRound(A, 0x0000000000000088L);
SHA3.keccakFRound(A, 0x0000000080008009L);
SHA3.keccakFRound(A, 0x000000008000000AL);
SHA3.keccakFRound(A, 0x000000008000808BL);
SHA3.keccakFRound(A, 0x800000000000008BL);
SHA3.keccakFRound(A, 0x8000000000008089L);
SHA3.keccakFRound(A, 0x8000000000008003L);
SHA3.keccakFRound(A, 0x8000000000008002L);
SHA3.keccakFRound(A, 0x8000000000000080L);
SHA3.keccakFRound(A, 0x000000000000800AL);
SHA3.keccakFRound(A, 0x800000008000000AL);
SHA3.keccakFRound(A, 0x8000000080008081L);
SHA3.keccakFRound(A, 0x8000000000008080L);
SHA3.keccakFRound(A, 0x0000000080000001L);
SHA3.keccakFRound(A, 0x8000000080008008L);
}
else
for (int i = 0; i < SHA3.nr; i++)
SHA3.keccakFRound(A, SHA3.RC[i] & SHA3.wmod);
}
/**
* Convert a chunk of byte:s to a word
*
* @param message The message
* @param rr Bitrate in bytes
* @param ww Word size in bytes
* @param off The offset in the message
* @return Lane
*/
private static long toLane(byte[] message, int rr, int ww, int off)
{
int n = Math.min(message.length, rr), rc = 0;
for (int i = off + ww - 1; i >= off; i--)
rc = (rc << 8) | ((i < n) ? message[i] : 0);
return rc;
}
/**
* Convert a chunk of byte:s to a 64-bit word
*
* @param message The message
* @param rr Bitrate in bytes
* @param off The offset in the message
* @return Lane
*/
private static long toLane64(byte[] message, int rr, int off)
{
int n = Math.min(message.length, rr), rc = 0;
return ((off + 7 < n) ? (message[off + 7] << 56) : 0) |
((off + 6 < n) ? (message[off + 6] << 48) : 0) |
((off + 5 < n) ? (message[off + 5] << 40) : 0) |
((off + 4 < n) ? (message[off + 4] << 32) : 0) |
((off + 3 < n) ? (message[off + 3] << 24) : 0) |
((off + 2 < n) ? (message[off + 2] << 16) : 0) |
((off + 1 < n) ? (message[off + 1] << 8) : 0) |
((off < n) ? (message[off]) : 0);
}
/**
* pad 10*1
*
* @param msg The message to pad
* @parm len The length of the message
* @param r The bitrate
* @return The message padded
*/
private static byte[] pad10star1(byte[] msg, int len, int r)
{
int nrf = len >> 3;
int nbrf = len & 7;
int ll = len % r;
byte b = (byte)(nbrf == 0 ? 1 : ((msg[nrf] >> (8 - nbrf)) | (1 << nbrf)));
byte[] message;
if ((r - 8 <= ll) && (ll <= r - 2))
{
message = new byte[len = nrf + 1];
message[nrf] = (byte)(b ^ 128);
}
else
{
len = (nrf + 1) << 3;
len = ((len - (len % r) + (r - 8)) >> 3) + 1;
message = new byte[len];
message[nrf] = b;
//for (long i = nrf + 1; i < len; i++)
// message[i + nrf] = 0;
message[len - 1] = -128;
}
for (int i = 0; i < nrf; i++)
message[i] = msg[i];
return message;
}
/**
* Initalise Keccak sponge
*
* @param r The bitrate
* @param c The capacity
* @param n The output size
*/
private static void initalise(int r, int c, int n)
{
SHA3.r = r;
SHA3.c = c;
SHA3.n = n;
SHA3.b = r + c;
SHA3.w = SHA3.b / 25;
SHA3.l = SHA3.lb(SHA3.w);
SHA3.nr = 12 + (SHA3.l << 1);
SHA3.wmod = (1 << SHA3.w) - 1;
SHA3.S = new long[25];
SHA3.M = new byte[(SHA3.r * SHA3.b) >> 2];
SHA3.mptr = 0;
}
/**
* Absorb the more of the message message to the Keccak sponge
*
* @param msg The partial message
*/
private static void update(byte[] msg)
{
int rr = SHA3.r >> 3;
int ww = SHA3.w >> 3;
if (SHA3.mptr + msg.length > SHA3.M.length)
System.arraycopy(SHA3.M, 0, SHA3.M = new byte[SHA3.M.length << 1], 0, SHA3.mptr);
System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msg.length);
SHA3.mptr += msg.length;
int len = SHA3.mptr;
len -= len % ((SHA3.r * SHA3.b) >> 3);
byte[] message;
System.arraycopy(SHA3.M, 0, message = new byte[len], 0, len);
System.arraycopy(SHA3.M, len, SHA3.M, 0, SHA3.mptr -= len);
/* Absorbing phase */
if (ww == 8)
for (int i = 0; i < len; i += rr)
{
SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0);
SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 8);
SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 16);
SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 24);
SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 32);
SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 40);
SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48);
SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 56);
SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 64);
SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 72);
SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 80);
SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 88);
SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96);
SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 104);
SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 112);
SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 120);
SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 128);
SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 136);
SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144);
SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 152);
SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 160);
SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 168);
SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 176);
SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 184);
SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192);
SHA3.keccakF(SHA3.S);
}
else
for (int i = 0; i < len; i += rr)
{
for (int j = 0; j < 25; j++)
SHA3.S[j] ^= SHA3.toLane(message, rr, ww, i + j * ww);
SHA3.keccakF(SHA3.S);
}
}
/**
* Squeeze the Keccak sponge
*/
private static byte[] digest()
{
return digest(null);
}
/**
* Absorb the last part of the message and squeeze the Keccak sponge
*
* @param msg The rest of the message
*/
private static byte[] digest(byte[] msg)
{
byte[] message;
if ((msg == null) || (msg.length == 0))
message = SHA3.pad10star1(SHA3.M, SHA3.mptr, SHA3.r);
else
{
if (SHA3.mptr + msg.length > SHA3.M.length)
System.arraycopy(SHA3.M, 0, SHA3.M = new byte[SHA3.M.length << 1], 0, SHA3.mptr);
System.arraycopy(msg, 0, SHA3.M, SHA3.mptr, msg.length);
message = SHA3.pad10star1(SHA3.M, SHA3.mptr + msg.length, SHA3.r);
}
SHA3.M = null;
int len = message.length;
byte[] rc = new byte[(SHA3.n + 7) >> 3];
int ptr = 0;
int rr = SHA3.r >> 3;
int nn = SHA3.n >> 3;
int ww = SHA3.w >> 3;
/* Absorbing phase */
if (ww == 8)
for (int i = 0; i < len; i += rr)
{
SHA3.S[ 0] ^= SHA3.toLane64(message, rr, i + 0);
SHA3.S[ 1] ^= SHA3.toLane64(message, rr, i + 8);
SHA3.S[ 2] ^= SHA3.toLane64(message, rr, i + 16);
SHA3.S[ 3] ^= SHA3.toLane64(message, rr, i + 24);
SHA3.S[ 4] ^= SHA3.toLane64(message, rr, i + 32);
SHA3.S[ 5] ^= SHA3.toLane64(message, rr, i + 40);
SHA3.S[ 6] ^= SHA3.toLane64(message, rr, i + 48);
SHA3.S[ 7] ^= SHA3.toLane64(message, rr, i + 56);
SHA3.S[ 8] ^= SHA3.toLane64(message, rr, i + 64);
SHA3.S[ 9] ^= SHA3.toLane64(message, rr, i + 72);
SHA3.S[10] ^= SHA3.toLane64(message, rr, i + 80);
SHA3.S[11] ^= SHA3.toLane64(message, rr, i + 88);
SHA3.S[12] ^= SHA3.toLane64(message, rr, i + 96);
SHA3.S[13] ^= SHA3.toLane64(message, rr, i + 104);
SHA3.S[14] ^= SHA3.toLane64(message, rr, i + 112);
SHA3.S[15] ^= SHA3.toLane64(message, rr, i + 120);
SHA3.S[16] ^= SHA3.toLane64(message, rr, i + 128);
SHA3.S[17] ^= SHA3.toLane64(message, rr, i + 136);
SHA3.S[18] ^= SHA3.toLane64(message, rr, i + 144);
SHA3.S[19] ^= SHA3.toLane64(message, rr, i + 152);
SHA3.S[20] ^= SHA3.toLane64(message, rr, i + 160);
SHA3.S[21] ^= SHA3.toLane64(message, rr, i + 168);
SHA3.S[22] ^= SHA3.toLane64(message, rr, i + 176);
SHA3.S[23] ^= SHA3.toLane64(message, rr, i + 184);
SHA3.S[24] ^= SHA3.toLane64(message, rr, i + 192);
SHA3.keccakF(SHA3.S);
}
else
for (int i = 0; i < len; i += rr)
{
for (int j = 0; j < 25; j++)
SHA3.S[j] ^= SHA3.toLane(message, rr, ww, i + j * ww);
SHA3.keccakF(SHA3.S);
}
/* Squeezing phase */
int olen = SHA3.n;
int j = 0;
int ni = Math.min(25, rr);
while (olen > 0)
{
int i = 0;
while ((i < ni) && (j < nn))
{
long v = SHA3.S[i];
for (int _ = 0; _ < ww; _++)
{
if (j < nn)
{
rc[ptr] = (byte)v;
ptr += 1;
}
v >>= 8;
j += 1;
}
i += 1;
}
olen -= SHA3.r;
if (olen > 0)
SHA3.keccakF(S);
}
return rc;
}
}