/**
* mds — A micro-display server
* Copyright © 2014, 2015, 2016 Mattias Andrée (maandree@member.fsf.org)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#ifndef MDS_LIBMDSSERVER_LINKED_LIST_H
#define MDS_LIBMDSSERVER_LINKED_LIST_H
/**
* Linear array sentinel doubly linked list class.
* An array linked list is a linked list constructed
* by parallel arrays which gives it nice memory
* properties. A linear sentinel linked list is a
* linear linked listed constructed as a circular
* linked listed with a sentinel (dummy) node between
* the first node and the last node. In this
* implementation, when a node is removed the value
* stored that that position is not removed before
* that position is reused. Insertion methods have
* constant amortised time complexity, and constant
* amortised memory complexity, removal methods have
* constant time complexity and constant memory
* complexity.
*/
#include
#include
#include
/**
* Sentinel value indicating that the position is unused
*/
#define LINKED_LIST_UNUSED (-((ssize_t)(SIZE_MAX >> 1)) - 1)
#define LINKED_LIST_T_VERSION 0
/**
* Linear array sentinel doubly linked list class
*/
typedef struct linked_list
{
/**
* The size of the arrays
*/
size_t capacity;
/**
* The index after the last used index in
* `values` and `next`
*/
size_t end;
/**
* Head of the stack of reusable positions
*/
size_t reuse_head;
/**
* Stack of indices than are no longer in use
*/
ssize_t* reusable;
/**
* The value stored in each node
*/
size_t* values;
/**
* The next node for each node, `edge` if the current
* node is the last node, and `LINKED_LIST_UNUSED`
* if there is no node on this position
*/
ssize_t* next;
/**
* The previous node for each node, `edge` if
* the current node is the first node, and
* `LINKED_LIST_UNUSED` if there is no node
* on this position
*/
ssize_t* previous;
/**
* The sentinel node in the list
*/
ssize_t edge;
} linked_list_t;
/**
* Create a linked list
*
* @param this Memory slot in which to store the new linked list
* @param capacity The minimum initial capacity of the linked list, 0 for default
* @return Non-zero on error, `errno` will have been set accordingly
*/
__attribute__((nonnull))
int linked_list_create(linked_list_t* restrict this, size_t capacity);
/**
* Release all resources in a linked list, should
* be done even if `linked_list_create` fails
*
* @param this The linked list
*/
__attribute__((nonnull))
void linked_list_destroy(linked_list_t* restrict this);
/**
* Clone a linked list
*
* @param this The linked list to clone
* @param out Memory slot in which to store the new linked list
* @return Non-zero on error, `errno` will have been set accordingly
*/
__attribute__((nonnull))
int linked_list_clone(const linked_list_t* restrict this, linked_list_t* restrict out);
/**
* Pack the list so that there are no reusable
* positions, and reduce the capacity to the
* smallest capacity that can be used. Note that
* values (nodes) returned by the list's methods
* will become invalid. Additionally (to reduce
* the complexity) the list will be defragment
* so that the nodes' indices are continuous.
* This method has linear time complexity and
* linear memory complexity.
*
* @param this The list
* @return Non-zero on error, `errno` will have been set accordingly
*/
__attribute__((nonnull))
int linked_list_pack(linked_list_t* restrict this);
/**
* Insert a value in the beginning of the list
*
* @param this:linked_list_t* The list
* @param value:size_t The value to insert
* @return :ssize_t The node that has been created and inserted,
* `LINKED_LIST_UNUSED` on error, `errno` will be set accordingly
*/
#define linked_list_insert_beginning(this, value) \
(linked_list_insert_after(this, value, this->edge))
/**
* Remove the node at the beginning of the list
*
* @param this:linked_list_t* The list
* @return :ssize_t The node that has been removed
*/
#define linked_list_remove_beginning(this) \
(linked_list_remove_after(this, this->edge))
/**
* Insert a value after a specified, reference, node
*
* @param this The list
* @param value The value to insert
* @param predecessor The reference node
* @return The node that has been created and inserted,
* `LINKED_LIST_UNUSED` on error, `errno` will be set accordingly
*/
__attribute__((nonnull))
ssize_t linked_list_insert_after(linked_list_t* restrict this, size_t value, ssize_t predecessor);
/**
* Remove the node after a specified, reference, node
*
* @param this The list
* @param predecessor The reference node
* @return The node that has been removed
*/
__attribute__((nonnull))
ssize_t linked_list_remove_after(linked_list_t* restrict this, ssize_t predecessor);
/**
* Insert a value before a specified, reference, node
*
* @param this The list
* @param value The value to insert
* @param successor The reference node
* @return The node that has been created and inserted,
* `LINKED_LIST_UNUSED` on error, `errno` will be set accordingly
*/
__attribute__((nonnull))
ssize_t linked_list_insert_before(linked_list_t* restrict this, size_t value, ssize_t successor);
/**
* Remove the node before a specified, reference, node
*
* @param this The list
* @param successor The reference node
* @return The node that has been removed
*/
__attribute__((nonnull))
ssize_t linked_list_remove_before(linked_list_t* restrict this, ssize_t successor);
/**
* Remove the node from the list
*
* @param this The list
* @param node The node to remove
*/
__attribute__((nonnull))
void linked_list_remove(linked_list_t* restrict this, ssize_t node);
/**
* Insert a value in the end of the list
*
* @param this:linked_list_t* The list
* @param value:size_t The value to insert
* @return :ssize_t The node that has been created and inserted,
* `LINKED_LIST_UNUSED` on error, `errno` will be set accordingly
*/
#define linked_list_insert_end(this, value) \
(linked_list_insert_before((this), (value), (this)->edge))
/**
* Remove the node at the end of the list
*
* @param this:linked_list_t* The list
* @return :ssize_t The node that has been removed
*/
#define linked_list_remove_end(this) \
(linked_list_remove_before((this), (this)->edge))
/**
* Calculate the buffer size need to marshal a linked list
*
* @param this The list
* @return The number of bytes to allocate to the output buffer
*/
__attribute__((pure, nonnull))
size_t linked_list_marshal_size(const linked_list_t* restrict this);
/**
* Marshals a linked list
*
* @param this The list
* @param data Output buffer for the marshalled data
*/
__attribute__((nonnull))
void linked_list_marshal(const linked_list_t* restrict this, char* restrict data);
/**
* Unmarshals a linked list
*
* @param this Memory slot in which to store the new linked list
* @param data In buffer with the marshalled data
* @return Non-zero on error, `errno` will be set accordingly.
* Destroy the list on error.
*/
__attribute__((nonnull))
int linked_list_unmarshal(linked_list_t* restrict this, char* restrict data);
/**
* Wrapper for `for` keyword that iterates over each element in a linked list
*
* @param list:linked_list_t The linked list
* @param node:ssize_t The variable to store the node in at each iteration
*/
#define foreach_linked_list_node(list, node) \
for (node = (list).edge; node = (list).next[node], node != (list).edge;)
/**
* Print the content of the list
*
* @param this The list
* @param output Output file
*/
__attribute__((nonnull))
void linked_list_dump(linked_list_t* restrict this, FILE* restrict output);
#endif