/** * mds — A micro-display server * Copyright © 2014, 2015, 2016 Mattias Andrée (maandree@member.fsf.org) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef MDS_LIBMDSSERVER_LINKED_LIST_H #define MDS_LIBMDSSERVER_LINKED_LIST_H /** * Linear array sentinel doubly linked list class. * An array linked list is a linked list constructed * by parallel arrays which gives it nice memory * properties. A linear sentinel linked list is a * linear linked listed constructed as a circular * linked listed with a sentinel (dummy) node between * the first node and the last node. In this * implementation, when a node is removed the value * stored that that position is not removed before * that position is reused. Insertion methods have * constant amortised time complexity, and constant * amortised memory complexity, removal methods have * constant time complexity and constant memory * complexity. */ #include #include #include /** * Sentinel value indicating that the position is unused */ #define LINKED_LIST_UNUSED (-((ssize_t)(SIZE_MAX >> 1)) - 1) #define LINKED_LIST_T_VERSION 0 /** * Linear array sentinel doubly linked list class */ typedef struct linked_list { /** * The size of the arrays */ size_t capacity; /** * The index after the last used index in * `values` and `next` */ size_t end; /** * Head of the stack of reusable positions */ size_t reuse_head; /** * Stack of indices than are no longer in use */ ssize_t *reusable; /** * The value stored in each node */ size_t *values; /** * The next node for each node, `edge` if the current * node is the last node, and `LINKED_LIST_UNUSED` * if there is no node on this position */ ssize_t *next; /** * The previous node for each node, `edge` if * the current node is the first node, and * `LINKED_LIST_UNUSED` if there is no node * on this position */ ssize_t *previous; /** * The sentinel node in the list */ ssize_t edge; } linked_list_t; /** * Create a linked list * * @param this Memory slot in which to store the new linked list * @param capacity The minimum initial capacity of the linked list, 0 for default * @return Non-zero on error, `errno` will have been set accordingly */ __attribute__((nonnull)) int linked_list_create(linked_list_t *restrict this, size_t capacity); /** * Release all resources in a linked list, should * be done even if `linked_list_create` fails * * @param this The linked list */ __attribute__((nonnull)) void linked_list_destroy(linked_list_t *restrict this); /** * Clone a linked list * * @param this The linked list to clone * @param out Memory slot in which to store the new linked list * @return Non-zero on error, `errno` will have been set accordingly */ __attribute__((nonnull)) int linked_list_clone(const linked_list_t *restrict this, linked_list_t *restrict out); /** * Pack the list so that there are no reusable * positions, and reduce the capacity to the * smallest capacity that can be used. Note that * values (nodes) returned by the list's methods * will become invalid. Additionally (to reduce * the complexity) the list will be defragment * so that the nodes' indices are continuous. * This method has linear time complexity and * linear memory complexity. * * @param this The list * @return Non-zero on error, `errno` will have been set accordingly */ __attribute__((nonnull)) int linked_list_pack(linked_list_t *restrict this); /** * Insert a value in the beginning of the list * * @param this:linked_list_t* The list * @param value:size_t The value to insert * @return :ssize_t The node that has been created and inserted, * `LINKED_LIST_UNUSED` on error, `errno` will be set accordingly */ #define linked_list_insert_beginning(this, value)\ (linked_list_insert_after(this, value, this->edge)) /** * Remove the node at the beginning of the list * * @param this:linked_list_t* The list * @return :ssize_t The node that has been removed */ #define linked_list_remove_beginning(this)\ (linked_list_remove_after(this, this->edge)) /** * Insert a value after a specified, reference, node * * @param this The list * @param value The value to insert * @param predecessor The reference node * @return The node that has been created and inserted, * `LINKED_LIST_UNUSED` on error, `errno` will be set accordingly */ __attribute__((nonnull)) ssize_t linked_list_insert_after(linked_list_t *restrict this, size_t value, ssize_t predecessor); /** * Remove the node after a specified, reference, node * * @param this The list * @param predecessor The reference node * @return The node that has been removed */ __attribute__((nonnull)) ssize_t linked_list_remove_after(linked_list_t *restrict this, ssize_t predecessor); /** * Insert a value before a specified, reference, node * * @param this The list * @param value The value to insert * @param successor The reference node * @return The node that has been created and inserted, * `LINKED_LIST_UNUSED` on error, `errno` will be set accordingly */ __attribute__((nonnull)) ssize_t linked_list_insert_before(linked_list_t *restrict this, size_t value, ssize_t successor); /** * Remove the node before a specified, reference, node * * @param this The list * @param successor The reference node * @return The node that has been removed */ __attribute__((nonnull)) ssize_t linked_list_remove_before(linked_list_t *restrict this, ssize_t successor); /** * Remove the node from the list * * @param this The list * @param node The node to remove */ __attribute__((nonnull)) void linked_list_remove(linked_list_t *restrict this, ssize_t node); /** * Insert a value in the end of the list * * @param this:linked_list_t* The list * @param value:size_t The value to insert * @return :ssize_t The node that has been created and inserted, * `LINKED_LIST_UNUSED` on error, `errno` will be set accordingly */ #define linked_list_insert_end(this, value)\ (linked_list_insert_before((this), (value), (this)->edge)) /** * Remove the node at the end of the list * * @param this:linked_list_t* The list * @return :ssize_t The node that has been removed */ #define linked_list_remove_end(this)\ (linked_list_remove_before((this), (this)->edge)) /** * Calculate the buffer size need to marshal a linked list * * @param this The list * @return The number of bytes to allocate to the output buffer */ __attribute__((pure, nonnull)) size_t linked_list_marshal_size(const linked_list_t *restrict this); /** * Marshals a linked list * * @param this The list * @param data Output buffer for the marshalled data */ __attribute__((nonnull)) void linked_list_marshal(const linked_list_t *restrict this, char *restrict data); /** * Unmarshals a linked list * * @param this Memory slot in which to store the new linked list * @param data In buffer with the marshalled data * @return Non-zero on error, `errno` will be set accordingly. * Destroy the list on error. */ __attribute__((nonnull)) int linked_list_unmarshal(linked_list_t *restrict this, char *restrict data); /** * Wrapper for `for` keyword that iterates over each element in a linked list * * @param list:linked_list_t The linked list * @param node:ssize_t The variable to store the node in at each iteration */ #define foreach_linked_list_node(list, node)\ for (node = (list).edge; node = (list).next[node], node != (list).edge;) /** * Print the content of the list * * @param this The list * @param output Output file */ __attribute__((nonnull)) void linked_list_dump(linked_list_t *restrict this, FILE *restrict output); #endif