/** * mds — A micro-display server * Copyright © 2014 Mattias Andrée (maandree@member.fsf.org) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "hash-table.h" #include #include /** * Test if a key matches the key in a bucket * * @param T The instance of the hash table * @param B The bucket * @param K The key * @param H The hash of the key */ #define TEST_KEY(T, B, K, H) \ ((B->key == K) || (T->key_comparator && (B->hash == H) && T->key_comparator(B->key, K))) /** * Calculate the hash of a key * * @param this The hash table * @param key The key to hash * @return The hash of the key */ static inline size_t __attribute__((const)) hash(const hash_table_t* restrict this, size_t key) { return this->hasher ? this->hasher(key) : key; } /** * Truncates the hash of a key to constrain it to the buckets * * @param this The hash table * @param key The key to hash * @return A non-negative value less the the table's capacity */ static inline size_t __attribute__((pure)) truncate_hash(const hash_table_t* restrict this, size_t hash) { return hash % this->capacity; } /** * Grow the table * * @param this The hash table * @return Non zero on error, errno will be set accordingly */ static int rehash(hash_table_t* restrict this) { hash_entry_t** old_buckets = this->buckets; size_t old_capacity = this->capacity; size_t i = old_capacity, index; hash_entry_t* bucket; hash_entry_t* destination; hash_entry_t* next; this->buckets = calloc((old_capacity * 2 + 1), sizeof(hash_entry_t*)); if (this->buckets == NULL) return -1; this->capacity = old_capacity * 2 + 1; this->threshold = (size_t)((float)(this->capacity) * this->load_factor); while (i) { bucket = this->buckets[--i]; while (bucket) { index = truncate_hash(this, bucket->hash); if ((destination = this->buckets[index])) { next = destination->next; while (next) { destination = next; next = destination->next; } destination->next = bucket; } else this->buckets[index] = bucket; next = bucket->next; bucket->next = NULL; bucket = next; } } free(old_buckets); return 0; } /** * Create a hash table * * @param this Memory slot in which to store the new hash table * @param initial_capacity The initial capacity of the table * @param load_factor The load factor of the table, i.e. when to grow the table * @return Non-zero on error, `errno` will have been set accordingly */ int hash_table_create_fine_tuned(hash_table_t* restrict this, size_t initial_capacity, float load_factor) { this->buckets = NULL; this->capacity = initial_capacity ? initial_capacity : 1; this->buckets = calloc(this->capacity, sizeof(hash_entry_t*)); if (this->buckets == NULL) return -1; this->load_factor = load_factor; this->threshold = (size_t)((float)(this->capacity) * load_factor); this->size = 0; this->value_comparator = NULL; this->key_comparator = NULL; this->hasher = NULL; return 0; } /** * Release all resources in a hash table, should * be done even if construction fails * * @param this The hash table * @param keys_freer Function that frees a key, `NULL` if keys should not be freed * @param values_freer Function that frees a value, `NULL` if value should not be freed */ void hash_table_destroy(hash_table_t* restrict this, free_func* key_freer, free_func* value_freer) { size_t i = this->capacity; hash_entry_t* bucket; hash_entry_t* last; if (this->buckets != NULL) { while (i) { bucket = this->buckets[--i]; while (bucket) { if (key_freer != NULL) key_freer(bucket->key); if (value_freer != NULL) value_freer(bucket->value); bucket = (last = bucket)->next; free(last); } } free(this->buckets); } } /** * Check whether a value is stored in the table * * @param this The hash table * @param value The value * @return Whether the value is stored in the table */ int hash_table_contains_value(const hash_table_t* restrict this, size_t value) { size_t i = this->capacity; hash_entry_t* restrict bucket; while (i) { bucket = this->buckets[--i]; while (bucket != NULL) { if (bucket->value == value) return 1; if (this->value_comparator && this->value_comparator(bucket->value, value)) return 1; bucket = bucket->next; } } return 0; } /** * Check whether a key is used in the table * * @param this The hash table * @param key The key * @return Whether the key is used */ int hash_table_contains_key(const hash_table_t* restrict this, size_t key) { size_t key_hash = hash(this, key); size_t index = truncate_hash(this, key_hash); hash_entry_t* restrict bucket = this->buckets[index]; while (bucket) { if (TEST_KEY(this, bucket, key, key_hash)) return 1; bucket = bucket->next; } return 0; } /** * Look up a value in the table * * @param this The hash table * @param key The key associated with the value * @return The value associated with the key, 0 if the key was not used */ size_t hash_table_get(const hash_table_t* restrict this, size_t key) { size_t key_hash = hash(this, key); size_t index = truncate_hash(this, key_hash); hash_entry_t* restrict bucket = this->buckets[index]; while (bucket) { if (TEST_KEY(this, bucket, key, key_hash)) return bucket->value; bucket = bucket->next; } return 0; } /** * Add an entry to the table * * @param this The hash table * @param key The key of the entry to add * @param value The value of the entry to add * @return The previous value associated with the key, 0 if the key was not used. * 0 will also be returned on error, check the `errno` variable. */ size_t hash_table_put(hash_table_t* restrict this, size_t key, size_t value) { size_t key_hash = hash(this, key); size_t index = truncate_hash(this, key_hash); hash_entry_t* restrict bucket = this->buckets[index]; size_t rc; while (bucket) if (TEST_KEY(this, bucket, key, key_hash)) { rc = bucket->value; bucket->value = value; return rc; } else bucket = bucket->next; if (++(this->size) > this->threshold) { errno = 0; if (rehash(this)) return 0; index = truncate_hash(this, key_hash); } errno = 0; bucket = malloc(sizeof(hash_entry_t)); if (bucket == NULL) return 0; bucket->value = value; bucket->key = key; bucket->hash = key_hash; bucket->next = this->buckets[index]; this->buckets[index] = bucket; return 0; } /** * Remove an entry in the table * * @param this The hash table * @param key The key of the entry to remove * @return The previous value associated with the key, 0 if the key was not used */ size_t hash_table_remove(hash_table_t* restrict this, size_t key) { size_t key_hash = hash(this, key); size_t index = truncate_hash(this, key_hash); hash_entry_t* bucket = this->buckets[index]; hash_entry_t* last = NULL; size_t rc; while (bucket) { if (TEST_KEY(this, bucket, key, key_hash)) { if (last == NULL) this->buckets[index] = bucket->next; else last->next = bucket->next; this->size--; rc = bucket->value; free(bucket); return rc; } last = bucket; bucket = bucket->next; } return 0; } /** * Remove all entries in the table * * @param this The hash table */ void hash_table_clear(hash_table_t* restrict this) { hash_entry_t** buf; hash_entry_t* bucket; size_t i, ptr; if (this->size) { buf = alloca((this->size + 1) * sizeof(hash_entry_t*)); i = this->capacity; while (i) { bucket = this->buckets[--i]; ptr = 0; buf[ptr++] = bucket; while (bucket) { bucket = bucket->next; buf[ptr++] = bucket; } while (ptr) free(buf[--ptr]); this->buckets[i] = NULL; } this->size = 0; } } /** * Calculate the buffer size need to marshal a hash table * * @param this The hash table * @return The number of bytes to allocate to the output buffer */ size_t hash_table_marshal_size(const hash_table_t* restrict this) { size_t n = this->capacity; size_t rc = 3 * sizeof(size_t) + sizeof(float) + n * sizeof(size_t); size_t i, m = 0; for (i = 0; i < n; i++) { hash_entry_t* restrict bucket = this->buckets[i]; while (bucket != NULL) { bucket = bucket->next; m++; } } return rc + m * 3 * sizeof(size_t); } /** * Marshals a hash table * * @param this The hash table * @param data Output buffer for the marshalled data */ void hash_table_marshal(const hash_table_t* restrict this, char* restrict data) { size_t i, n = this->capacity; ((size_t*)data)[0] = this->capacity; data += 1 * sizeof(size_t) / sizeof(char); ((float*)data)[0] = this->load_factor; data += 1 * sizeof(float) / sizeof(char); ((size_t*)data)[0] = this->threshold; ((size_t*)data)[1] = this->size; data += 2 * sizeof(size_t) / sizeof(char); for (i = 0; i < n; i++) { hash_entry_t* restrict bucket = this->buckets[i]; size_t m = 0; while (bucket != NULL) { ((size_t*)data)[1 + m * 3 + 0] = bucket->key; ((size_t*)data)[1 + m * 3 + 1] = bucket->value; ((size_t*)data)[1 + m * 3 + 2] = bucket->hash; bucket = bucket->next; m++; } ((size_t*)data)[0] = m; data += (1 + m * 3) * sizeof(size_t) / sizeof(char); } } /** * Unmarshals a hash table * * @param this Memory slot in which to store the new hash table * @param data In buffer with the marshalled data * @param remapper Function that translates values, `NULL` if not translation takes place * @return Non-zero on error, errno will be set accordingly. * Destroy the table on error. */ int hash_table_unmarshal(hash_table_t* restrict this, char* restrict data, remap_func* remapper) { size_t i, n; this->value_comparator = NULL; this->key_comparator = NULL; this->hasher = NULL; this->capacity = n = ((size_t*)data)[0]; data += 1 * sizeof(size_t) / sizeof(char); this->load_factor = ((float*)data)[0]; data += 1 * sizeof(float) / sizeof(char); this->threshold = ((size_t*)data)[0]; this->size = ((size_t*)data)[1]; data += 2 * sizeof(size_t) / sizeof(char); this->buckets = calloc(this->capacity, sizeof(hash_entry_t*)); if (this->buckets == NULL) return -1; for (i = 0; i < n; i++) { size_t m = ((size_t*)data)[0]; hash_entry_t* restrict bucket; data += 1 * sizeof(size_t) / sizeof(char); this->buckets[i] = bucket = malloc(sizeof(hash_entry_t)); if (bucket == NULL) return -1; while (m--) { if (m == 0) bucket->next = NULL; else { bucket->next = malloc(sizeof(hash_entry_t)); if (bucket->next == NULL) return -1; } bucket->key = ((size_t*)data)[0]; bucket->value = ((size_t*)data)[1]; if (remapper != NULL) bucket->value = remapper(bucket->value); bucket->hash = ((size_t*)data)[2]; data += 3 * sizeof(size_t) / sizeof(char); } } return 0; }