/** * mds — A micro-display server * Copyright © 2014, 2015, 2016, 2017 Mattias Andrée (m@maandree.se) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "hash-table.h" #include "macros.h" #include #include /** * Test if a key matches the key in a bucket * * @param T The instance of the hash table * @param B The bucket * @param K The key * @param H The hash of the key */ #define TEST_KEY(T, B, K, H)\ ((B)->key == (K) || ((T)->key_comparator && (B)->hash == (H) && (T)->key_comparator((B)->key, (K)))) /** * Calculate the hash of a key * * @param this The hash table * @param key The key to hash * @return The hash of the key */ static inline size_t __attribute__((pure, nonnull)) hash(const hash_table_t *restrict this, size_t key) { return this->hasher ? this->hasher(key) : key; } /** * Truncates the hash of a key to constrain it to the buckets * * @param this The hash table * @param key The key to hash * @return A non-negative value less the the table's capacity */ static inline size_t __attribute__((pure, nonnull)) truncate_hash(const hash_table_t *restrict this, size_t hash) { return hash % this->capacity; } /** * Grow the table * * @param this The hash table * @return Non-zero on error, `errno` will be set accordingly */ static int __attribute__((nonnull)) rehash(hash_table_t *restrict this) { hash_entry_t **old_buckets = this->buckets; size_t old_capacity = this->capacity; size_t i = old_capacity, index; hash_entry_t *bucket; hash_entry_t *destination; hash_entry_t *next; fail_if (xcalloc(this->buckets, old_capacity * 2 + 1, hash_entry_t*)); this->capacity = old_capacity * 2 + 1; this->threshold = (size_t)((float)(this->capacity) * this->load_factor); while (i--) { bucket = this->buckets[i]; while (bucket) { index = truncate_hash(this, bucket->hash); if ((destination = this->buckets[index])) { while ((next = destination->next)) destination = next; destination->next = bucket; } else { this->buckets[index] = bucket; } next = bucket->next; bucket->next = NULL; bucket = next; } } free(old_buckets); return 0; fail: return -1; } /** * Create a hash table * * @param this Memory slot in which to store the new hash table * @param initial_capacity The initial capacity of the table * @param load_factor The load factor of the table, i.e. when to grow the table * @return Non-zero on error, `errno` will have been set accordingly */ int hash_table_create_fine_tuned(hash_table_t *restrict this, size_t initial_capacity, float load_factor) { this->buckets = NULL; this->capacity = initial_capacity ? initial_capacity : 1; fail_if (xcalloc(this->buckets, this->capacity, hash_entry_t*)); this->load_factor = load_factor; this->threshold = (size_t)((float)(this->capacity) * load_factor); this->size = 0; this->value_comparator = NULL; this->key_comparator = NULL; this->hasher = NULL; return 0; fail: return -1; } /** * Release all resources in a hash table, should * be done even if construction fails * * @param this The hash table * @param keys_freer Function that frees a key, `NULL` if keys should not be freed * @param values_freer Function that frees a value, `NULL` if value should not be freed */ void hash_table_destroy(hash_table_t *restrict this, free_func *key_freer, free_func *value_freer) { size_t i = this->capacity; hash_entry_t *bucket, *last; if (this->buckets) { while (i) { bucket = this->buckets[--i]; while (bucket) { if (key_freer) key_freer(bucket->key); if (value_freer) value_freer(bucket->value); bucket = (last = bucket)->next; free(last); } } free(this->buckets); } } /** * Check whether a value is stored in the table * * @param this The hash table * @param value The value * @return Whether the value is stored in the table */ int hash_table_contains_value(const hash_table_t *restrict this, size_t value) { size_t i = this->capacity; hash_entry_t *restrict bucket; while (i--) { bucket = this->buckets[i]; while (bucket) { if (bucket->value == value) return 1; if (this->value_comparator && this->value_comparator(bucket->value, value)) return 1; bucket = bucket->next; } } return 0; } /** * Check whether a key is used in the table * * @param this The hash table * @param key The key * @return Whether the key is used */ int hash_table_contains_key(const hash_table_t *restrict this, size_t key) { size_t key_hash = hash(this, key); size_t index = truncate_hash(this, key_hash); hash_entry_t *restrict bucket = this->buckets[index]; while (bucket) { if (TEST_KEY(this, bucket, key, key_hash)) return 1; bucket = bucket->next; } return 0; } /** * Look up a value in the table * * @param this The hash table * @param key The key associated with the value * @return The value associated with the key, 0 if the key was not used */ size_t hash_table_get(const hash_table_t *restrict this, size_t key) { size_t key_hash = hash(this, key); size_t index = truncate_hash(this, key_hash); hash_entry_t *restrict bucket = this->buckets[index]; while (bucket) { if (TEST_KEY(this, bucket, key, key_hash)) return bucket->value; bucket = bucket->next; } return 0; } /** * Look up an entry in the table * * @param this The hash table * @param key The key associated with the value * @return The entry associated with the key, `NULL` if the key was not used */ hash_entry_t * hash_table_get_entry(const hash_table_t *restrict this, size_t key) { size_t key_hash = hash(this, key); size_t index = truncate_hash(this, key_hash); hash_entry_t *restrict bucket = this->buckets[index]; while (bucket) { if (TEST_KEY(this, bucket, key, key_hash)) return bucket; bucket = bucket->next; } return NULL; } /** * Add an entry to the table * * @param this The hash table * @param key The key of the entry to add * @param value The value of the entry to add * @return The previous value associated with the key, 0 if the key was not used. * 0 will also be returned on error, check the `errno` variable. */ size_t hash_table_put(hash_table_t *restrict this, size_t key, size_t value) { size_t key_hash = hash(this, key); size_t index = truncate_hash(this, key_hash); hash_entry_t *restrict bucket = this->buckets[index]; size_t rc; while (bucket) { if (TEST_KEY(this, bucket, key, key_hash)) { rc = bucket->value; bucket->value = value; return rc; } else { bucket = bucket->next; } } if (++(this->size) > this->threshold) { errno = 0; fail_if (rehash(this)); index = truncate_hash(this, key_hash); } errno = 0; fail_if (xmalloc(bucket, 1, hash_entry_t)); bucket->value = value; bucket->key = key; bucket->hash = key_hash; bucket->next = this->buckets[index]; this->buckets[index] = bucket; return 0; fail: return 0; } /** * Remove an entry in the table * * @param this The hash table * @param key The key of the entry to remove * @return The previous value associated with the key, 0 if the key was not used */ size_t hash_table_remove(hash_table_t *restrict this, size_t key) { size_t key_hash = hash(this, key); size_t index = truncate_hash(this, key_hash); hash_entry_t *bucket = this->buckets[index]; hash_entry_t *last = NULL; size_t rc; while (bucket) { if (TEST_KEY(this, bucket, key, key_hash)) { if (!last) this->buckets[index] = bucket->next; else last->next = bucket->next; this->size--; rc = bucket->value; free(bucket); return rc; } last = bucket; bucket = bucket->next; } return 0; } /** * Remove all entries in the table * * @param this The hash table */ void hash_table_clear(hash_table_t *restrict this) { hash_entry_t **buf, *bucket; size_t i, ptr; if (this->size) { buf = alloca((this->size + 1) * sizeof(hash_entry_t*)); i = this->capacity; while (i--) { bucket = this->buckets[i]; ptr = 0; buf[ptr++] = bucket; while (bucket) { bucket = bucket->next; buf[ptr++] = bucket; } while (ptr) free(buf[--ptr]); this->buckets[i] = NULL; } this->size = 0; } } /** * Calculate the buffer size need to marshal a hash table * * @param this The hash table * @return The number of bytes to allocate to the output buffer */ size_t hash_table_marshal_size(const hash_table_t *restrict this) { size_t n = this->capacity; size_t rc = 3 * sizeof(size_t) + sizeof(float) + n * sizeof(size_t); size_t i, m = 0; hash_entry_t *restrict bucket; for (i = 0; i < n; i++) { bucket = this->buckets[i]; while (bucket) { bucket = bucket->next; m++; } } return rc + m * 3 * sizeof(size_t) + sizeof(int); } /** * Marshals a hash table * * @param this The hash table * @param data Output buffer for the marshalled data */ void hash_table_marshal(const hash_table_t *restrict this, char *restrict data) { size_t i, n = this->capacity, m; hash_entry_t *restrict bucket; buf_set_next(data, int, HASH_TABLE_T_VERSION); buf_set_next(data, size_t, this->capacity); buf_set_next(data, float, this->load_factor); buf_set_next(data, size_t, this->threshold); buf_set_next(data, size_t, this->size); for (i = 0; i < n; i++) { bucket = this->buckets[i]; m = 0; while (bucket) { buf_set(data, size_t, 1 + m * 3 + 0, bucket->key); buf_set(data, size_t, 1 + m * 3 + 1, bucket->value); buf_set(data, size_t, 1 + m * 3 + 2, bucket->hash); bucket = bucket->next; m++; } buf_set(data, size_t, 0, m); buf_next(data, size_t, 1 + m * 3); } } /** * Unmarshals a hash table * * @param this Memory slot in which to store the new hash table * @param data In buffer with the marshalled data * @param remapper Function that translates values, `NULL` if not translation takes place * @return Non-zero on error, `errno` will be set accordingly. * Destroy the table on error. */ int hash_table_unmarshal(hash_table_t *restrict this, char *restrict data, remap_func *remapper) { size_t i, n, m; hash_entry_t *restrict bucket; /* buf_get(data, int, 0, HASH_TABLE_T_VERSION); */ buf_next(data, int, 1); this->value_comparator = NULL; this->key_comparator = NULL; this->hasher = NULL; buf_get_next(data, size_t, this->capacity = n); buf_get_next(data, float, this->load_factor); buf_get_next(data, size_t, this->threshold); buf_get_next(data, size_t, this->size); fail_if (xcalloc(this->buckets, this->capacity, hash_entry_t*)); for (i = 0; i < n; i++) { buf_get_next(data, size_t, m); fail_if (xmalloc(this->buckets[i] = bucket, 1, hash_entry_t)); while (m--) { if (!m) bucket->next = NULL; else fail_if (xmalloc(bucket->next, 1, hash_entry_t)); buf_get_next(data, size_t, bucket->key); buf_get_next(data, size_t, bucket->value); if (remapper) bucket->value = remapper(bucket->value); buf_get_next(data, size_t, bucket->hash); } } return 0; fail: return -1; }