/** * mds — A micro-display server * Copyright © 2014 Mattias Andrée (maandree@member.fsf.org) * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "fd-table.h" #include #include #include /** * Create a fd table * * @param this Memory slot in which to store the new fd table * @param initial_capacity The initial capacity of the table * @return Non-zero on error, `errno` will have been set accordingly */ int fd_table_create_tuned(fd_table_t* restrict this, size_t initial_capacity) { size_t bitcap; this->capacity = initial_capacity ? initial_capacity : 1; this->size = 0; this->values = NULL; this->used = NULL; this->value_comparator = NULL; /* It is important that both allocations are done with calloc: `this->used` must set all keys as unused at the initial state, `this->values` must be initialised for marshaling and it helps the time overhead of `fd_table_contains_value`. */ bitcap = (this->capacity + 63) / 64; this->used = calloc(bitcap, sizeof(size_t)); if (this->used == NULL) return -1; this->values = calloc(this->capacity, sizeof(size_t)); if (this->values == NULL) return -1; return 0; } /** * Release all resources in a fd table, should * be done even if construction fails * * @param this The fd table * @param keys_freer Function that frees a key, `NULL` if keys should not be freed * @param values_freer Function that frees a value, `NULL` if value should not be freed */ void fd_table_destroy(fd_table_t* restrict this, free_func* key_freer, free_func* value_freer) { if (((key_freer == NULL) && (value_freer == NULL)) || (this->used == NULL)) { if (this->values != NULL) free(this->values); if (this->used != NULL) free(this->used); } else { if (this->values != NULL) { size_t i; for (i = 0; i < this->capacity; i++) if (this->used[i / 64] & ((uint64_t)1 << (i % 64))) { if (key_freer != NULL) key_freer(i); if (value_freer != NULL) value_freer(this->values[i]); } free(this->values); } free(this->used); } } /** * Check whether a value is stored in the table * * @param this The fd table * @param value The value * @return Whether the value is stored in the table */ int fd_table_contains_value(const fd_table_t* restrict this, size_t value) { size_t i; if (this->value_comparator == NULL) { for (i = 0; i < this->capacity; i++) if (this->values[i] == value) if (this->used[i / 64] & ((uint64_t)1 << (i % 64))) return 1; } else { for (i = 0; i < this->capacity; i++) if (this->used[i / 64] & ((uint64_t)1 << (i % 64))) if (this->value_comparator(this->values[i], value)) return 1; } return 0; } /** * Check whether a key is used in the table * * @param this The fd table * @param key The key * @return Whether the key is used */ int fd_table_contains_key(const fd_table_t* restrict this, int key) { return ((size_t)key < this->capacity) && (this->used[key / 64] & ((uint64_t)1 << (key % 64))); } /** * Look up a value in the table * * @param this The fd table * @param key The key associated with the value * @return The value associated with the key, 0 if the key was not used */ size_t fd_table_get(const fd_table_t* restrict this, int key) { if (fd_table_contains_key(this, key) == 0) return 0; return this->values[key]; } /** * Add an entry to the table * * @param this The fd table * @param key The key of the entry to add * @param value The value of the entry to add * @return The previous value associated with the key, 0 if the key was not used. * 0 will also be returned on error, check the `errno` variable. */ size_t fd_table_put(fd_table_t* restrict this, int key, size_t value) { if (fd_table_contains_key(this, key)) { size_t rc = fd_table_get(this, key); this->values[key] = value; return rc; } else { errno = 0; if ((size_t)key >= this->capacity) { size_t* old_values = this->values; size_t old_bitcap, new_bitcap; this->values = realloc(this->values, (this->capacity << 1) * sizeof(size_t)); if (this->values == NULL) { this->values = old_values; return 0; } memset(this->values + this->capacity, 0, this->capacity * sizeof(size_t)); old_bitcap = (this->capacity + 63) / 64; this->capacity <<= 1; new_bitcap = (this->capacity + 63) / 64; if (new_bitcap > old_bitcap) { uint64_t* old_used = this->used; this->used = realloc(this->used, new_bitcap * sizeof(size_t)); if (this->used == NULL) { this->used = old_used; this->capacity >>= 1; return 0; } memset(this->used + old_bitcap, 0, (new_bitcap - old_bitcap) * sizeof(uint64_t)); } } this->used[key / 64] |= (uint64_t)1 << (key % 64); this->values[key] = value; this->size++; return 0; } } /** * Remove an entry in the table * * @param this The fd table * @param key The key of the entry to remove * @return The previous value associated with the key, 0 if the key was not used */ size_t fd_table_remove(fd_table_t* restrict this, int key) { size_t rc = fd_table_get(this, key); if (rc && fd_table_contains_key(this, key)) { this->used[key / 64] &= ~((uint64_t)1 << (key % 64)); this->size--; } return rc; } /** * Remove all entries in the table * * @param this The fd table */ void fd_table_clear(fd_table_t* restrict this) { size_t bitcap; this->size = 0; bitcap = (this->capacity + 63) / 64; memset(this->used, 0, bitcap * sizeof(uint64_t)); } /** * Calculate the buffer size need to marshal a fd table * * @param this The fd table * @return The number of bytes to allocate to the output buffer */ size_t fd_table_marshal_size(const fd_table_t* restrict this) { size_t bitcap = (this->capacity + 63) / 64; return (this->capacity + 2) * sizeof(size_t) + bitcap * sizeof(uint64_t) + sizeof(int); } /** * Marshals a fd table * * @param this The fd table * @param data Output buffer for the marshalled data */ void fd_table_marshal(const fd_table_t* restrict this, char* restrict data) { size_t bitcap = (this->capacity + 63) / 64; ((int*)data)[0] = FD_TABLE_T_VERSION; data += sizeof(int) / sizeof(char); ((size_t*)data)[0] = this->capacity; ((size_t*)data)[1] = this->size; data += 2 * sizeof(size_t) / sizeof(char); memcpy(data, this->values, this->capacity * sizeof(size_t)); data += this->capacity * sizeof(size_t) / sizeof(char); memcpy(data, this->used, bitcap * sizeof(uint64_t)); } /** * Unmarshals a fd table * * @param this Memory slot in which to store the new fd table * @param data In buffer with the marshalled data * @param remapper Function that translates values, `NULL` if not translation takes place * @return Non-zero on error, errno will be set accordingly. * Destroy the table on error. */ int fd_table_unmarshal(fd_table_t* restrict this, char* restrict data, remap_func* remapper) { size_t bitcap; /* ((int*)data)[0] == FD_TABLE_T_VERSION */ data += sizeof(int) / sizeof(char); this->capacity = ((size_t*)data)[0]; this->size = ((size_t*)data)[1]; data += 2 * sizeof(size_t) / sizeof(char); this->values = NULL; this->used = NULL; this->value_comparator = NULL; this->values = malloc(this->capacity * sizeof(size_t)); if (this->values == NULL) return -1; bitcap = (this->capacity + 63) / 64; this->used = malloc(bitcap * sizeof(size_t)); if (this->used == NULL) return -1; memcpy(this->values, data, this->capacity * sizeof(size_t)); data += this->capacity * sizeof(size_t) / sizeof(char); memcpy(this->used, data, bitcap * sizeof(uint64_t)); if (remapper != NULL) { size_t i; for (i = 0; i < this->capacity; i++) if (this->used[i / 64] & ((uint64_t)1 << (i % 64))) this->values[i] = remapper(this->values[i]); } return 0; }