\chapter{Number theory} \label{chap:Number theory} In this chapter, you will learn about the number theoretic functions in libzahl. \vspace{1cm} \minitoc \newpage \section{Odd or even} \label{sec:Odd or even} There are four functions available for testing the oddness and evenness of an integer: \begin{alltt} int zodd(z_t a); int zeven(z_t a); int zodd_nonzero(z_t a); int zeven_nonzero(z_t a); \end{alltt} \noindent {\tt zodd} returns 1 if {\tt a} contains an odd value, or 0 if {\tt a} contains an even number. Conversely, {\tt zeven} returns 1 if {\tt a} contains an even value, or 0 if {\tt a} contains an odd number. {\tt zodd\_nonzero} and {\tt zeven\_nonzero} behave exactly like {\tt zodd} and {\tt zeven}, respectively, but assumes that {\tt a} contains a non-zero value, if not undefined behaviour is invoked, possibly in the form of a segmentation fault; they are thus sligtly faster than {\tt zodd} and {\tt zeven}. It is discouraged to test the returned value against 1, we should always test against 0, treating all non-zero value as equivalent to 1. For clarity, we use also avoid testing that the returned value is zero, for example, rather than {\tt !zeven(a)} we write {\tt zodd(a)}. \newpage \section{Signum} \label{sec:Signum} There are two functions available for testing the sign of an integer, one of the can be used to retrieve the sign: \begin{alltt} int zsignum(z_t a); int zzero(z_t a); \end{alltt} \noindent {\tt zsignum} returns $-1$ if $a < 0$, $0$ if $a = 0$, and $+1$ if $a > 0$, that is, \vspace{1em} \( \displaystyle{ \mbox{sgn}~a = \left \lbrace \begin{array}{rl} -1 & \textrm{if}~ a < 0 \\ 0 & \textrm{if}~ a = 0 \\ +1 & \textrm{if}~ a > 0 \end{array} \right . }\) \vspace{1em} \noindent It is discouraged to compare the returned value against $-1$ and $+1$; always compare against 0, for example: \begin{alltt} if (zsignum(a) > 0) "positive"; if (zsignum(a) >= 0) "non-negative"; if (zsignum(a) == 0) "zero"; if (!zsignum(a)) "zero"; if (zsignum(a) <= 0) "non-positive"; if (zsignum(a) < 0) "negative"; if (zsignum(a)) "non-zero"; \end{alltt} \noindent However, when we are doing arithmetic with the signum, we may relay on the result never being any other value than $-1$, $0$, and $+0$. For example: \begin{alltt} zset(sgn, zsignum(a)); zadd(b, sgn); \end{alltt} {\tt zzero} returns 0 if $a = 0$ or 1 if $a \neq 0$. Like with {\tt zsignum}, avoid testing the returned value against 1, rather test that the returned value is not 0. When however we are doing arithmetic with the result, we may relay on the result never being any other value than 0 or 1. \newpage \section{Greatest common divisor} \label{sec:Greatest common divisor} There is no single agreed upon definition for the greatest common divisor of two integer, that cover non-positive integers. In libzahl we define it as \vspace{1em} \( \displaystyle{ \gcd(a, b) = \left \lbrace \begin{array}{rl} -k & \textrm{if}~ a < 0, b < 0 \\ b & \textrm{if}~ a = 0 \\ a & \textrm{if}~ b = 0 \\ k & \textrm{otherwise} \end{array} \right . }\), \vspace{1em} \noindent where $k$ is the largest integer that divides both $\lvert a \rvert$ and $\lvert b \rvert$. This definion ensures \vspace{1em} \( \displaystyle{ \frac{a}{\gcd(a, b)} \left \lbrace \begin{array}{rl} > 0 & \textrm{if}~ a < 0, b < 0 \\ < 0 & \textrm{if}~ a < 0, b > 0 \\ = 1 & \textrm{if}~ b = 0, a \neq 0 \\ = 0 & \textrm{if}~ a = 0, b \neq 0 \\ \in \textbf{N} & \textrm{otherwise if}~ a \neq 0, b \neq 0 \end{array} \right . }\), \vspace{1em} \noindent and analogously for $\frac{b}{\gcd(a,\,b)}$. Note however, the convension $\gcd(0, 0) = 0$ is adhered. Therefore, before dividing with $\gcd{a, b}$ you may want to check whether $\gcd(a, b) = 0$. $\gcd(a, b)$ is calculated with {\tt zgcd(a, b)}. {\tt zgcd} calculates the greatest common divisor using the Binary GCD algorithm. \vspace{1em} \hspace{-2.8ex} \begin{minipage}{\linewidth} \begin{algorithmic} \RETURN $a + b$ {\bf if} $ab = 0$ \RETURN $-\gcd(\lvert a \rvert, \lvert b \rvert)$ {\bf if} $a < 0$ \AND $b < 0$ \STATE $s \gets \max s : 2^s \vert a, b$ \STATE $u, v \gets \lvert a \rvert \div 2^s, \lvert b \rvert \div 2^s$ \WHILE{$u \neq v$} \STATE $v \leftrightarrow u$ {\bf if} $v < u$ \STATE $v \gets v - u$ \STATE $v \gets v \div 2^x$, where $x = \max x : 2^x \vert v$ \ENDWHILE \RETURN $u \cdot 2^s$ \end{algorithmic} \end{minipage} \vspace{1em} \noindent $\max x : 2^x \vert z$ is returned by {\tt zlsb(z)} \psecref{sec:Boundary}. \newpage \section{Primality test} \label{sec:Primality test} A primality of an integer can be test with \begin{alltt} enum zprimality zptest(z_t w, z_t a, int t); \end{alltt} \noindent {\tt zptest} uses Miller–Rabin primality test, with {\tt t} runs of its witness loop, to determine whether {\tt a} is prime. {\tt zptest} returns either \begin{itemize} \item {\tt PRIME} = 2: {\tt a} is prime. This is only returned for known prime numbers: 2 and 3. \item {\tt PROBABLY\_PRIME} = 1: {\tt a} is probably a prime. The certainty will be $1 - 4^{-t}$. \item {\tt NONPRIME} = 0: {\tt a} is either composite, non-positive, or 1. It is certain that {\tt a} is not prime. \end{itemize} If and only if {\tt NONPRIME} is returned, a value will be assigned to {\tt w} — unless {\tt w} is {\tt NULL}. This will be the witness of {\tt a}'s completeness. If $a \le 2$, it is not really composite, and the value of {\tt a} is copied into {\tt w}. $\gcd(w, a)$ can be used to extract a factor of $a$. This factor is however not necessarily, and unlikely so, prime, but can be composite, or even 1. In the latter case this becomes utterly useless. Therefore using this method for prime factorisation is a bad idea. Below is pseudocode for the Miller–Rabin primality test with witness return. \vspace{1em} \hspace{-2.8ex} \begin{minipage}{\linewidth} \begin{algorithmic} \RETURN NONPRIME ($w \gets a$) {\bf if} {$a \le 1$} \RETURN PRIME {\bf if} {$a \le 3$} \RETURN NONPRIME ($w \gets 2$) {\bf if} {$2 \vert a$} \STATE $r \gets \max r : 2^r \vert (a - 1)$ \STATE $d \gets (a - 1) \div 2^r$ \STATE {\bf repeat} $t$ {\bf times} \hspace{2ex} \begin{minipage}{\linewidth} \STATE $k \xleftarrow{\$} \textbf{Z}_{a - 2} \setminus \textbf{Z}_{2}$ \STATE $x \gets k^d \mod a$ \STATE {\bf continue} {\bf if} $x = 1$ \OR $x = a - 1$ \STATE {\bf repeat} $r$ {\bf times or until} $x = 1$ \OR $x = a - 1$ \hspace{2ex} \begin{minipage}{\linewidth} \vspace{-1ex} \STATE $x \gets x^2 \mod a$ \end{minipage} \vspace{-1.5em} \STATE {\bf end repeat} \STATE {\bf if} $x = 1$ {\bf return} NONPRIME ($w \gets k$) \end{minipage} \vspace{-0.8ex} \STATE {\bf end repeat} \RETURN PROBABLY PRIME \end{algorithmic} \end{minipage} \vspace{1em} \noindent $\max x : 2^x \vert z$ is returned by {\tt zlsb(z)} \psecref{sec:Boundary}.