\chapter{Number theory} \label{chap:Number theory} In this chapter, you will learn about the number theoretic functions in libzahl. \vspace{1cm} \minitoc \newpage \section{Odd or even} \label{sec:Odd or even} There are four functions available for testing the oddness and evenness of an integer: \begin{alltt} int zodd(z_t a); int zeven(z_t a); int zodd_nonzero(z_t a); int zeven_nonzero(z_t a); \end{alltt} \noindent {\tt zodd} returns 1 if {\tt a} contains an odd value, or 0 if {\tt a} contains an even number. Conversely, {\tt zeven} returns 1 if {\tt a} contains an even value, or 0 if {\tt a} contains an odd number. {\tt zodd\_nonzero} and {\tt zeven\_nonzero} behave exactly like {\tt zodd} and {\tt zeven}, respectively, but assumes that {\tt a} contains a non-zero value, if not undefined behaviour is invoked, possibly in the form of a segmentation fault; they are thus sligtly faster than {\tt zodd} and {\tt zeven}. It is discouraged to test the returned value against 1, we should always test against 0, treating all non-zero value as equivalent to 1. For clarity, we use also avoid testing that the returned value is zero, for example, rather than {\tt !zeven(a)} we write {\tt zodd(a)}. \newpage \section{Signum} \label{sec:Signum} There are two functions available for testing the sign of an integer, one of the can be used to retrieve the sign: \begin{alltt} int zsignum(z_t a); int zzero(z_t a); \end{alltt} \noindent {\tt zsignum} returns $-1$ if $a < 0$, $0$ if $a = 0$, and $+1$ if $a > 0$, that is, \vspace{1em} \( \displaystyle{ \mbox{sgn}~a = \left \lbrace \begin{array}{rl} -1 & \textrm{if}~ a < 0 \\ 0 & \textrm{if}~ a = 0 \\ +1 & \textrm{if}~ a > 0 \end{array} \right . }\) \vspace{1em} \noindent It is discouraged to compare the returned value against $-1$ and $+1$; always compare against 0, for example: \begin{alltt} if (zsignum(a) > 0) "positive"; if (zsignum(a) >= 0) "non-negative"; if (zsignum(a) == 0) "zero"; if (!zsignum(a)) "zero"; if (zsignum(a) <= 0) "non-positive"; if (zsignum(a) < 0) "negative"; if (zsignum(a)) "non-zero"; \end{alltt} \noindent However, when we are doing arithmetic with the signum, we may relay on the result never being any other value than $-1$, $0$, and $+0$. For example: \begin{alltt} zset(sgn, zsignum(a)); zadd(b, sgn); \end{alltt} {\tt zzero} returns 0 if $a = 0$ or 1 if $a \neq 0$. Like with {\tt zsignum}, avoid testing the returned value against 1, rather test that the returned value is not 0. When however we are doing arithmetic with the result, we may relay on the result never being any other value than 0 or 1. \newpage \section{Greatest common divisor} \label{sec:Greatest common divisor} TODO % zgcd \newpage \section{Primality test} \label{sec:Primality test} TODO % zptest