\chapter{Not implemented} \label{chap:Not implemented} In this chapter we maintain a list of features we have choosen not to implement, but would fit into libzahl had we not have our priorities straight. Functions listed herein will only be implemented if there is shown that it would be overwhelmingly advantageous. For each feature, a sample implementation or a mathematical expression on which you can base your implemention. The sample implementation create temporary integere references, this is for simplicity in the example, your should try to use dedicated variables, in case of recursion, a robust program should store temporary variables on a stack, so they can be clean up of something happens. \vspace{1cm} \minitoc \newpage \section{Extended greatest common divisor} \label{sec:Extended greatest common divisor} \begin{alltt} void extgcd(z_t bézout_coeff_1, z_t bézout_coeff_2, z_t gcd z_t quotient_1, z_t quotient_2, z_t a, z_t b) \{ #define old_r gcd #define old_s bézout_coeff_1 #define old_t bézout_coeff_2 #define s quotient_2 #define t quotient_1 z_t r, q, qs, qt; int odd = 0; zinit(r), zinit(q), zinit(qs), zinit(qt); zset(r, b), zset(old_r, a); zseti(s, 0), zseti(old_s, 1); zseti(t, 1), zseti(old_t, 0); while (!zzero(r)) \{ odd ^= 1; zdivmod(q, old_r, old_r, r), zswap(old_r, r); zmul(qs, q, s), zsub(old_s, old_s, qs); zmul(qt, q, t), zsub(old_t, old_t, qt); zswap(old_s, s), zswap(old_t, t); \} odd ? abs(s, s) : abs(t, t); zfree(r), zfree(q), zfree(qs), zfree(qt); \} \end{alltt} \newpage \section{Least common multiple} \label{sec:Least common multiple} \( \displaystyle{ \mbox{lcm}(a, b) = {\lvert a \cdot b \rvert \over \mbox{gcd}(a, b)} }\) \newpage \section{Modular multiplicative inverse} \label{sec:Modular multiplicative inverse} \begin{alltt} int modinv(z_t inv, z_t a, z_t m) \{ z_t x, _1, _2, _3, gcd, mabs, apos; int invertible, aneg = zsignum(a) < 0; zinit(x), zinit(_1), zinit(_2), zinit(_3), zinit(gcd); *mabs = *m; zabs(mabs, mabs); if (aneg) \{ zinit(apos); zset(apos, a); if (zcmpmag(apos, mabs)) zmod(apos, apos, mabs); zadd(apos, mabs, apos); \} extgcd(inv, _1, _2, _3, gcd, apos, mabs); if ((invertible = !zcmpi(gcd, 1))) \{ if (zsignum(inv) < 0) (zsignum(m) < 0 ? zsub : zadd)(x, x, m); zswap(x, inv); \} if (aneg) zfree(apos); zfree(x), zfree(_1), zfree(_2), zfree(_3), zfree(gcd); return invertible; \} \end{alltt} \newpage \section{Random prime number generation} \label{sec:Random prime number generation} TODO \newpage \section{Symbols} \label{sec:Symbols} \subsection{Legendre symbol} \label{sec:Legendre symbol} TODO \subsection{Jacobi symbol} \label{sec:Jacobi symbol} TODO \subsection{Kronecker symbol} \label{sec:Kronecker symbol} TODO \subsection{Power residue symbol} \label{sec:Power residue symbol} TODO \subsection{Pochhammer \emph{k}-symbol} \label{sec:Pochhammer k-symbol} \( \displaystyle{ (x)_{n,k} = \prod_{i = 1}^n (x + (i - 1)k) }\) \newpage \section{Logarithm} \label{sec:Logarithm} TODO \newpage \section{Roots} \label{sec:Roots} TODO \newpage \section{Modular roots} \label{sec:Modular roots} TODO % Square: Cipolla's algorithm, Pocklington's algorithm, Tonelli–Shanks algorithm \newpage \section{Combinatorial} \label{sec:Combinatorial} \subsection{Factorial} \label{sec:Factorial} \( \displaystyle{ n! = \left \lbrace \begin{array}{ll} \displaystyle{\prod_{i = 0}^n i} & \textrm{if}~ n \ge 0 \\ \textrm{undefined} & \textrm{otherwise} \end{array} \right . }\) \vspace{1em} This can be implemented much more efficently than using the naïve method, and is a very important function for many combinatorial applications, therefore it may be implemented in the future if the demand is high enough. An efficient, yet not optimal, implementation of factorials that about halves the number of required multiplications compared to the naïve method can be derived from the observation \vspace{1em} \( \displaystyle{ n! = n!! ~ \lfloor n / 2 \rfloor! ~ 2^{\lfloor n / 2 \rfloor} }\), $n$ odd. \vspace{1em} \noindent The resulting algorithm can be expressed \begin{alltt} void fact(z_t r, uint64_t n) \{ z_t p, f, two; uint64_t *ns, s = 1, i = 1; zinit(p), zinit(f), zinit(two); zseti(r, 1), zseti(p, 1), zseti(f, n), zseti(two, 2); ns = alloca(zbits(f) * sizeof(*ns)); while (n > 1) \{ if (n & 1) \{ ns[i++] = n; s += n >>= 1; \} else \{ zmul(r, r, (zsetu(f, n), f)); n -= 1; \} \} for (zseti(f, 1); i-- > 0; zmul(r, r, p);) for (n = ns[i]; zcmpu(f, n); zadd(f, f, two)) zmul(p, p, f); zlsh(r, r, s); zfree(two), zfree(f), zfree(p); \} \end{alltt} \subsection{Subfactorial} \label{sec:Subfactorial} \( \displaystyle{ !n = \left \lbrace \begin{array}{ll} n(!(n - 1)) + (-1)^n & \textrm{if}~ n > 0 \\ 1 & \textrm{if}~ n = 0 \\ \textrm{undefined} & \textrm{otherwise} \end{array} \right . = n! \sum_{i = 0}^n {(-1)^i \over i!} }\) \subsection{Alternating factorial} \label{sec:Alternating factorial} \( \displaystyle{ \mbox{af}(n) = \sum_{i = 1}^n {(-1)^{n - i} i!} }\) \subsection{Multifactorial} \label{sec:Multifactorial} \( \displaystyle{ n!^{(k)} = \left \lbrace \begin{array}{ll} 1 & \textrm{if}~ n = 0 \\ n & \textrm{if}~ 0 < n \le k \\ n((n - k)!^{(k)}) & \textrm{if}~ n > k \\ \textrm{undefined} & \textrm{otherwise} \end{array} \right . }\) \subsection{Quadruple factorial} \label{sec:Quadruple factorial} \( \displaystyle{ (4n - 2)!^{(4)} }\) \subsection{Superfactorial} \label{sec:Superfactorial} \( \displaystyle{ \mbox{sf}(n) = \prod_{k = 1}^n k^{1 + n - k} }\), undefined for $n < 0$. \subsection{Hyperfactorial} \label{sec:Hyperfactorial} \( \displaystyle{ H(n) = \prod_{k = 1}^n k^k }\), undefined for $n < 0$. \subsection{Raising factorial} \label{sec:Raising factorial} \( \displaystyle{ x^{(n)} = {(x + n - 1)! \over (x - 1)!} }\), undefined for $n < 0$. \subsection{Falling factorial} \label{sec:Falling factorial} \( \displaystyle{ (x)_n = {x! \over (x - n)!} }\), undefined for $n < 0$. \subsection{Primorial} \label{sec:Primorial} \( \displaystyle{ n\# = \prod_{\lbrace i \in \textbf{P} ~:~ i \le n \rbrace} i }\) \vspace{1em} \noindent \( \displaystyle{ p_n\# = \prod_{i \in \textbf{P}_{\pi(n)}} i }\) \subsection{Gamma function} \label{sec:Gamma function} $\Gamma(n) = (n - 1)!$, undefined for $n \le 0$. \subsection{K-function} \label{sec:K-function} \( \displaystyle{ K(n) = \left \lbrace \begin{array}{ll} \displaystyle{\prod_{i = 1}^{n - 1} i^i} & \textrm{if}~ n \ge 0 \\ 1 & \textrm{if}~ n = -1 \\ 0 & \textrm{otherwise (result is truncated)} \end{array} \right . }\) \subsection{Binomial coefficient} \label{sec:Binomial coefficient} \( \displaystyle{ {n \choose k} = {n! \over k!(n - k)!} = {1 \over (n - k)!} \prod_{i = k + 1}^n i = {1 \over k!} \prod_{i = n - k + 1}^n i }\) \subsection{Catalan number} \label{sec:Catalan number} \( \displaystyle{ C_n = \left . {2n \choose n} \middle / (n + 1) \right . }\) \subsection{Fuss–Catalan number} \label{sec:Fuss-Catalan number} % not en dash \( \displaystyle{ A_m(p, r) = {r \over mp + r} {mp + r \choose m} }\) \newpage \section{Fibonacci numbers} \label{sec:Fibonacci numbers} Fibonacci numbers can be computed efficiently using the following algorithm: \begin{alltt} static void fib_ll(z_t f, z_t g, z_t n) \{ z_t a, k; int odd; if (zcmpi(n, 1) <= 0) \{ zseti(f, !zzero(n)); zseti(f, zzero(n)); return; \} zinit(a), zinit(k); zrsh(k, n, 1); if (zodd(n)) \{ odd = zodd(k); fib_ll(a, g, k); zadd(f, a, a); zadd(k, f, g); zsub(f, f, g); zmul(f, f, k); zseti(k, odd ? -2 : +2); zadd(f, f, k); zadd(g, g, g); zadd(g, g, a); zmul(g, g, a); \} else \{ fib_ll(g, a, k); zadd(f, a, a); zadd(f, f, g); zmul(f, f, g); zsqr(a, a); zsqr(g, g); zadd(g, a); \} zfree(k), zfree(a); \} void fib(z_t f, z_t n) \{ z_t tmp, k; zinit(tmp), zinit(k); zset(k, n); fib_ll(f, tmp, k); zfree(k), zfree(tmp); \} \end{alltt} \noindent This algorithm is based on the rules \vspace{1em} \( \displaystyle{ F_{2k + 1} = 4F_k^2 - F_{k - 1}^2 + 2(-1)^k = (2F_k + F_{k-1})(2F_k - F_{k-1}) + 2(-1)^k }\) \vspace{1em} \( \displaystyle{ F_{2k} = F_k \cdot (F_k + 2F_{k - 1}) }\) \vspace{1em} \( \displaystyle{ F_{2k - 1} = F_k^2 + F_{k - 1}^2 }\) \vspace{1em} \noindent Each call to {\tt fib\_ll} returns $F_n$ and $F_{n - 1}$ for any input $n$. $F_{k}$ is only correctly returned for $k \ge 0$. $F_n$ and $F_{n - 1}$ is used for calculating $F_{2n}$ or $F_{2n + 1}$. The algorithm can be speed up with a larger lookup table than one covering just the base cases. Alternatively, a naïve calculation could be used for sufficiently small input. \newpage \section{Lucas numbers} \label{sec:Lucas numbers} Lucas numbers can be calculated by utilising {\tt fib\_ll} from \secref{sec:Fibonacci numbers}: \begin{alltt} void lucas(z_t l, z_t n) \{ z_t k; int odd; if (zcmp(n, 1) <= 0) \{ zset(l, 1 + zzero(n)); return; \} zinit(k); zrsh(k, n, 1); if (zeven(n)) \{ lucas(l, k); zsqr(l, l); zseti(k, zodd(k) ? +2 : -2); zadd(l, k); \} else \{ odd = zodd(k); fib_ll(l, k, k); zadd(l, l, l); zadd(l, l, k); zmul(l, l, k); zseti(k, 5); zmul(l, l, k); zseti(k, odd ? +4 : -4); zadd(l, l, k); \} zfree(k); \} \end{alltt} \noindent This algorithm is based on the rules \vspace{1em} \( \displaystyle{ L_{2k} = L_k^2 - 2(-1)^k }\) \vspace{1ex} \( \displaystyle{ L_{2k + 1} = 5F_{k - 1} \cdot (2F_k + F_{k - 1}) - 4(-1)^k }\) \vspace{1em} \noindent Alternatively, the function can be implemented trivially using the rule \vspace{1em} \( \displaystyle{ L_k = F_k + 2F_{k - 1} }\) \newpage \section{Bit operation} \label{sec:Bit operation unimplemented} \subsection{Bit scanning} \label{sec:Bit scanning} Scanning for the next set or unset bit can be trivially implemented using {\tt zbtest}. A more efficient, although not optimally efficient, implementation would be \begin{alltt} size_t bscan(z_t a, size_t whence, int direction, int value) \{ size_t ret; z_t t; zinit(t); value ? zset(t, a) : znot(t, a); ret = direction < 0 ? (ztrunc(t, t, whence + 1), zbits(t) - 1) : (zrsh(t, t, whence), zlsb(t) + whence); zfree(t); return ret; \} \end{alltt} \subsection{Population count} \label{sec:Population count} The following function can be used to compute the population count, the number of set bits, in an integer, counting the sign bit: \begin{alltt} size_t popcount(z_t a) \{ size_t i, ret = zsignum(a) < 0; for (i = 0; i < a->used; i++) \{ ret += __builtin_popcountll(a->chars[i]); \} return ret; \} \end{alltt} \noindent It requires a compiler extension, if missing, there are other ways to computer the population count for a word: manually bit-by-bit, or with a fully unrolled \begin{alltt} int s; for (s = 1; s < 64; s <<= 1) w = (w >> s) + w; \end{alltt} \subsection{Hamming distance} \label{sec:Hamming distance} A simple way to compute the Hamming distance, the number of differing bits, between two number is with the function \begin{alltt} size_t hammdist(z_t a, z_t b) \{ size_t ret; z_t t; zinit(t); zxor(t, a, b); ret = popcount(t); zfree(t); return ret; \} \end{alltt} \noindent The performance of this function could be improve by comparing character by character manually with using {\tt zxor}. \subsection{Character retrieval} \label{sec:Character retrieval} \begin{alltt} uint64_t etu(z_t a) \{ return zzero(a) ? 0 : a->chars[0]; \} \end{alltt}