\chapter{Not implemented} \label{chap:Not implemented} In this chapter we maintain a list of features we have chosen not to implement, but would fit into libzahl had we not have our priorities straight. Functions listed herein will only be implemented if it is shown that it would be overwhelmingly advantageous. For each feature, a sample implementation or a mathematical expression on which you can base your implemention is included. The sample implementations create temporary integer references, this is to simplify the examples. You should try to use dedicated variables; in case of recursion, a robust program should store temporary variables on a stack, so they can be clean up if something happens. Research problems, like prime-factorisation and discrete logarithms do not fit in the scope of bignum libraries. % Unless they are extraordinarily bloated with vague mission-scope, like systemd. And therefore do not fit into libzahl, and will not be included in this chapter. Operators and functions that grow so ridiculously fast that a tiny lookup table constructed to cover all practical input will also not be included in this chapter, nor in libzahl. \vspace{1cm} \minitoc \newpage \section{Extended greatest common divisor} \label{sec:Extended greatest common divisor} \begin{alltt} void extgcd(z_t bézout_coeff_1, z_t bézout_coeff_2, z_t gcd z_t quotient_1, z_t quotient_2, z_t a, z_t b) \{ #define old_r gcd #define old_s bézout_coeff_1 #define old_t bézout_coeff_2 #define s quotient_2 #define t quotient_1 z_t r, q, qs, qt; int odd = 0; zinit(r), zinit(q), zinit(qs), zinit(qt); zset(r, b), zset(old_r, a); zseti(s, 0), zseti(old_s, 1); zseti(t, 1), zseti(old_t, 0); while (!zzero(r)) \{ odd ^= 1; zdivmod(q, old_r, old_r, r), zswap(old_r, r); zmul(qs, q, s), zsub(old_s, old_s, qs); zmul(qt, q, t), zsub(old_t, old_t, qt); zswap(old_s, s), zswap(old_t, t); \} odd ? abs(s, s) : abs(t, t); zfree(r), zfree(q), zfree(qs), zfree(qt); \} \end{alltt} Perhaps you are asking yourself ``wait a minute, doesn't the extended Euclidean algorithm only have three outputs if you include the greatest common divisor, what is this shenanigans?'' No\footnote{Well, technically yes, but it calculates two values for free in the same ways as division calculates the remainder for free.}, it has five outputs, most implementations just ignore two of them. If this confuses you, or you want to know more about this, I refer you to Wikipeida. \newpage \section{Least common multiple} \label{sec:Least common multiple} \( \displaystyle{ \mbox{lcm}(a, b) = \frac{\lvert a \cdot b \rvert}{\mbox{gcd}(a, b)} }\) Be aware, {\tt zgcd} can return zero. \newpage \section{Modular multiplicative inverse} \label{sec:Modular multiplicative inverse} \begin{alltt} int modinv(z_t inv, z_t a, z_t m) \{ z_t x, _1, _2, _3, gcd, mabs, apos; int invertible, aneg = zsignum(a) < 0; zinit(x), zinit(_1), zinit(_2), zinit(_3), zinit(gcd); *mabs = *m; zabs(mabs, mabs); if (aneg) \{ zinit(apos); zset(apos, a); if (zcmpmag(apos, mabs)) zmod(apos, apos, mabs); zadd(apos, apos, mabs); \} extgcd(inv, _1, _2, _3, gcd, apos, mabs); if ((invertible = !zcmpi(gcd, 1))) \{ if (zsignum(inv) < 0) (zsignum(m) < 0 ? zsub : zadd)(x, x, m); zswap(x, inv); \} if (aneg) zfree(apos); zfree(x), zfree(_1), zfree(_2), zfree(_3), zfree(gcd); return invertible; \} \end{alltt} \newpage \section{Random prime number generation} \label{sec:Random prime number generation} TODO \newpage \section{Symbols} \label{sec:Symbols} \subsection{Legendre symbol} \label{sec:Legendre symbol} \( \displaystyle{ \left ( \frac{a}{p} \right ) \equiv a^{\frac{p - 1}{2}} ~(\text{Mod}~p),~ \left ( \frac{a}{p} \right ) \in \{-1,~0,~1\},~ p \in \textbf{P},~ p > 2 }\) \vspace{1em} \noindent That is, unless $\displaystyle{a^{\frac{p - 1}{2}} \mod p \le 1}$, $\displaystyle{a^{\frac{p - 1}{2}} \mod p = p - 1}$, so $\displaystyle{\left ( \frac{a}{p} \right ) = -1}$. It should be noted that \( \displaystyle{ \left ( \frac{a}{p} \right ) = \left ( \frac{a ~\text{Mod}~ p}{p} \right ), }\) so a compressed lookup table can be used for small $p$. \subsection{Jacobi symbol} \label{sec:Jacobi symbol} \( \displaystyle{ \left ( \frac{a}{n} \right ) = \prod_k \left ( \frac{a}{p_k} \right )^{n_k}, }\) where $n$ = $\displaystyle{\prod_k p_k^{n_k}}$, and $p_k \in \textbf{P}$. \vspace{1em} Like the Legendre symbol, the Jacobi symbol is $n$-period over $a$. If $n$, is prime, the Jacobi symbol is the Legendre symbol, but the Jacobi symbol is defined for all odd numbers $n$, where the Legendre symbol is defined only for odd primes $n$. Use the following algorithm to calculate the Jacobi symbol: \vspace{1em} \hspace{-2.8ex} \begin{minipage}{\linewidth} \begin{algorithmic} \STATE $a \gets a \mod n$ \STATE $r \gets \mbox{lsb}~ a$ \STATE $a \gets a \cdot 2^{-r}$ \STATE \(\displaystyle{ r \gets \left \lbrace \begin{array}{rl} 1 & \text{if}~ n \equiv 1, 7 ~(\text{Mod}~ 8) ~\text{or}~ r \equiv 0 ~(\text{Mod}~ 2) \\ -1 & \text{otherwise} \\ \end{array} \right . }\) \IF{$a = 1$} \RETURN $r$ \ELSIF{$\gcd(a, n) \neq 1$} \RETURN $0$ \ENDIF \STATE $(a, n) = (n, a)$ \STATE \textbf{start over} \end{algorithmic} \end{minipage} \vspace{1em} \subsection{Kronecker symbol} \label{sec:Kronecker symbol} TODO \subsection{Power residue symbol} \label{sec:Power residue symbol} TODO \subsection{Pochhammer \emph{k}-symbol} \label{sec:Pochhammer k-symbol} \( \displaystyle{ (x)_{n,k} = \prod_{i = 1}^n (x + (i - 1)k) }\) \newpage \section{Logarithm} \label{sec:Logarithm} TODO \newpage \section{Roots} \label{sec:Roots} TODO \newpage \section{Modular roots} \label{sec:Modular roots} TODO % Square: Cipolla's algorithm, Pocklington's algorithm, Tonelli–Shanks algorithm \newpage \section{Combinatorial} \label{sec:Combinatorial} \subsection{Factorial} \label{sec:Factorial} \( \displaystyle{ n! = \left \lbrace \begin{array}{ll} \displaystyle{\prod_{i = 1}^n i} & \textrm{if}~ n \ge 0 \\ \textrm{undefined} & \textrm{otherwise} \end{array} \right . }\) \vspace{1em} This can be implemented much more efficently than using the naïve method, and is a very important function for many combinatorial applications, therefore it may be implemented in the future if the demand is high enough. An efficient, yet not optimal, implementation of factorials that about halves the number of required multiplications compared to the naïve method can be derived from the observation \vspace{1em} \( \displaystyle{ n! = n!! ~ \lfloor n / 2 \rfloor! ~ 2^{\lfloor n / 2 \rfloor} }\), $n$ odd. \vspace{1em} \noindent The resulting algorithm can be expressed \begin{alltt} void fact(z_t r, uint64_t n) \{ z_t p, f, two; uint64_t *ns, s = 1, i = 1; zinit(p), zinit(f), zinit(two); zseti(r, 1), zseti(p, 1), zseti(f, n), zseti(two, 2); ns = alloca(zbits(f) * sizeof(*ns)); while (n > 1) \{ if (n & 1) \{ ns[i++] = n; s += n >>= 1; \} else \{ zmul(r, r, (zsetu(f, n), f)); n -= 1; \} \} for (zseti(f, 1); i-- > 0; zmul(r, r, p);) for (n = ns[i]; zcmpu(f, n); zadd(f, f, two)) zmul(p, p, f); zlsh(r, r, s); zfree(two), zfree(f), zfree(p); \} \end{alltt} \subsection{Subfactorial} \label{sec:Subfactorial} \( \displaystyle{ !n = \left \lbrace \begin{array}{ll} n(!(n - 1)) + (-1)^n & \textrm{if}~ n > 0 \\ 1 & \textrm{if}~ n = 0 \\ \textrm{undefined} & \textrm{otherwise} \end{array} \right . = n! \sum_{i = 0}^n \frac{(-1)^i}{i!} }\) \subsection{Alternating factorial} \label{sec:Alternating factorial} \( \displaystyle{ \mbox{af}(n) = \sum_{i = 1}^n {(-1)^{n - i} i!} }\) \subsection{Multifactorial} \label{sec:Multifactorial} \( \displaystyle{ n!^{(k)} = \left \lbrace \begin{array}{ll} 1 & \textrm{if}~ n = 0 \\ n & \textrm{if}~ 0 < n \le k \\ n((n - k)!^{(k)}) & \textrm{if}~ n > k \\ \textrm{undefined} & \textrm{otherwise} \end{array} \right . }\) \subsection{Quadruple factorial} \label{sec:Quadruple factorial} \( \displaystyle{ (4n - 2)!^{(4)} }\) \subsection{Superfactorial} \label{sec:Superfactorial} \( \displaystyle{ \mbox{sf}(n) = \prod_{k = 1}^n k^{1 + n - k} }\), undefined for $n < 0$. \subsection{Hyperfactorial} \label{sec:Hyperfactorial} \( \displaystyle{ H(n) = \prod_{k = 1}^n k^k }\), undefined for $n < 0$. \subsection{Raising factorial} \label{sec:Raising factorial} \( \displaystyle{ x^{(n)} = \frac{(x + n - 1)!}{(x - 1)!} }\), undefined for $n < 0$. \subsection{Falling factorial} \label{sec:Falling factorial} \( \displaystyle{ (x)_n = \frac{x!}{(x - n)!} }\), undefined for $n < 0$. \subsection{Primorial} \label{sec:Primorial} \( \displaystyle{ n\# = \prod_{\lbrace i \in \textbf{P} ~:~ i \le n \rbrace} i }\) \vspace{1em} \noindent \( \displaystyle{ p_n\# = \prod_{i \in \textbf{P}_{\pi(n)}} i }\) \subsection{Gamma function} \label{sec:Gamma function} $\Gamma(n) = (n - 1)!$, undefined for $n \le 0$. \subsection{K-function} \label{sec:K-function} \( \displaystyle{ K(n) = \left \lbrace \begin{array}{ll} \displaystyle{\prod_{i = 1}^{n - 1} i^i} & \textrm{if}~ n \ge 0 \\ 1 & \textrm{if}~ n = -1 \\ 0 & \textrm{otherwise (result is truncated)} \end{array} \right . }\) \subsection{Binomial coefficient} \label{sec:Binomial coefficient} \( \displaystyle{ \binom{n}{k} = \frac{n!}{k!(n - k)!} = \frac{1}{(n - k)!} \prod_{i = k + 1}^n i = \frac{1}{k!} \prod_{i = n - k + 1}^n i }\) \subsection{Catalan number} \label{sec:Catalan number} \( \displaystyle{ C_n = \left . \binom{2n}{n} \middle / (n + 1) \right . }\) \subsection{Fuss–Catalan number} \label{sec:Fuss-Catalan number} % not en dash \( \displaystyle{ A_m(p, r) = \frac{r}{mp + r} \binom{mp + r}{m} }\) \newpage \section{Fibonacci numbers} \label{sec:Fibonacci numbers} Fibonacci numbers can be computed efficiently using the following algorithm: \begin{alltt} static void fib_ll(z_t f, z_t g, z_t n) \{ z_t a, k; int odd; if (zcmpi(n, 1) <= 0) \{ zseti(f, !zzero(n)); zseti(f, zzero(n)); return; \} zinit(a), zinit(k); zrsh(k, n, 1); if (zodd(n)) \{ odd = zodd(k); fib_ll(a, g, k); zadd(f, a, a); zadd(k, f, g); zsub(f, f, g); zmul(f, f, k); zseti(k, odd ? -2 : +2); zadd(f, f, k); zadd(g, g, g); zadd(g, g, a); zmul(g, g, a); \} else \{ fib_ll(g, a, k); zadd(f, a, a); zadd(f, f, g); zmul(f, f, g); zsqr(a, a); zsqr(g, g); zadd(g, a); \} zfree(k), zfree(a); \} \end{alltt} \newpage \begin{alltt} void fib(z_t f, z_t n) \{ z_t tmp, k; zinit(tmp), zinit(k); zset(k, n); fib_ll(f, tmp, k); zfree(k), zfree(tmp); \} \end{alltt} \noindent This algorithm is based on the rules \vspace{1em} \( \displaystyle{ F_{2k + 1} = 4F_k^2 - F_{k - 1}^2 + 2(-1)^k = (2F_k + F_{k-1})(2F_k - F_{k-1}) + 2(-1)^k }\) \vspace{1em} \( \displaystyle{ F_{2k} = F_k \cdot (F_k + 2F_{k - 1}) }\) \vspace{1em} \( \displaystyle{ F_{2k - 1} = F_k^2 + F_{k - 1}^2 }\) \vspace{1em} \noindent Each call to {\tt fib\_ll} returns $F_n$ and $F_{n - 1}$ for any input $n$. $F_{k}$ is only correctly returned for $k \ge 0$. $F_n$ and $F_{n - 1}$ is used for calculating $F_{2n}$ or $F_{2n + 1}$. The algorithm can be sped up with a larger lookup table than one covering just the base cases. Alternatively, a naïve calculation could be used for sufficiently small input. \newpage \section{Lucas numbers} \label{sec:Lucas numbers} Lucas [lyk\textscripta] numbers can be calculated by utilising {\tt fib\_ll} from \secref{sec:Fibonacci numbers}: \begin{alltt} void lucas(z_t l, z_t n) \{ z_t k; int odd; if (zcmp(n, 1) <= 0) \{ zset(l, 1 + zzero(n)); return; \} zinit(k); zrsh(k, n, 1); if (zeven(n)) \{ lucas(l, k); zsqr(l, l); zseti(k, zodd(k) ? +2 : -2); zadd(l, k); \} else \{ odd = zodd(k); fib_ll(l, k, k); zadd(l, l, l); zadd(l, l, k); zmul(l, l, k); zseti(k, 5); zmul(l, l, k); zseti(k, odd ? +4 : -4); zadd(l, l, k); \} zfree(k); \} \end{alltt} \noindent This algorithm is based on the rules \vspace{1em} \( \displaystyle{ L_{2k} = L_k^2 - 2(-1)^k }\) \vspace{1ex} \( \displaystyle{ L_{2k + 1} = 5F_{k - 1} \cdot (2F_k + F_{k - 1}) - 4(-1)^k }\) \vspace{1em} \noindent Alternatively, the function can be implemented trivially using the rule \vspace{1em} \( \displaystyle{ L_k = F_k + 2F_{k - 1} }\) \newpage \section{Bit operation} \label{sec:Bit operation unimplemented} \subsection{Bit scanning} \label{sec:Bit scanning} Scanning for the next set or unset bit can be trivially implemented using {\tt zbtest}. A more efficient, although not optimally efficient, implementation would be \begin{alltt} size_t bscan(z_t a, size_t whence, int direction, int value) \{ size_t ret; z_t t; zinit(t); value ? zset(t, a) : znot(t, a); ret = direction < 0 ? (ztrunc(t, t, whence + 1), zbits(t) - 1) : (zrsh(t, t, whence), zlsb(t) + whence); zfree(t); return ret; \} \end{alltt} \subsection{Population count} \label{sec:Population count} The following function can be used to compute the population count, the number of set bits, in an integer, counting the sign bit: \begin{alltt} size_t popcount(z_t a) \{ size_t i, ret = zsignum(a) < 0; for (i = 0; i < a->used; i++) \{ ret += __builtin_popcountll(a->chars[i]); \} return ret; \} \end{alltt} \noindent It requires a compiler extension, if missing, there are other ways to computer the population count for a word: manually bit-by-bit, or with a fully unrolled \begin{alltt} int s; for (s = 1; s < 64; s <<= 1) w = (w >> s) + w; \end{alltt} \subsection{Hamming distance} \label{sec:Hamming distance} A simple way to compute the Hamming distance, the number of differing bits, between two numbers is with the function \begin{alltt} size_t hammdist(z_t a, z_t b) \{ size_t ret; z_t t; zinit(t); zxor(t, a, b); ret = popcount(t); zfree(t); return ret; \} \end{alltt} \noindent The performance of this function could be improved by comparing character by character manually using {\tt zxor}. \newpage \section{Miscellaneous} \label{sec:Miscellaneous} \subsection{Character retrieval} \label{sec:Character retrieval} \begin{alltt} uint64_t getu(z_t a) \{ return zzero(a) ? 0 : a->chars[0]; \} \end{alltt} \subsection{Fit test} \label{sec:Fit test} Some libraries have functions for testing whether a big integer is small enough to fit into an intrinsic type. Since libzahl does not provide conversion to intrinsic types this is irrelevant. But additionally, it can be implemented with a single one-line macro that does not have any side-effects. \begin{alltt} #define fits_in(a, type) (zbits(a) <= 8 * sizeof(type)) \textcolor{c}{/* \textrm{Just be sure the type is integral.} */} \end{alltt} \subsection{Reference duplication} \label{sec:Reference duplication} This could be useful for creating duplicates with modified sign. But only if neither {\tt r} nor {\tt a} will be modified whilst both are in use. Because it is unsafe, fairly simple to create an implementation with acceptable performance — {\tt *r = *a}, — and probably seldom useful, this has not be implemented. \begin{alltt} int refdup(z_t r, z_t a) \{ \textcolor{c}{/* \textrm{Almost fully optimised, but perfectly portable} *r = *a; */} r->sign = a->sign; r->used = a->used; r->alloced = a->alloced; r->chars = a->chars; \} \end{alltt} \subsection{Variadic initialisation} \label{sec:Variadic initialisation} Most bignum libraries have variadic functions for initialisation and uninitialisation. This is not available in libzahl, because it is not useful enough and has performance overhead. And what's next, support {\tt va\_list}, variadic addition, variadic multiplication, power towers, set manipulation? Anyone can implement variadic wrapper for {\tt zinit} and {\tt zfree} if they really need it. But if you want to avoid the overhead, you can use something like this: \begin{alltt} /* \textrm{Call like this:} MANY(zinit, (a), (b), (c)) */ #define MANY(f, ...) (_MANY1(f, __VA_ARGS__,,,,,,,,,)) #define _MANY1(f, a, ...) (void)f a, _MANY2(f, __VA_ARGS__) #define _MANY2(f, a, ...) (void)f a, _MANY3(f, __VA_ARGS__) #define _MANY3(f, a, ...) (void)f a, _MANY4(f, __VA_ARGS__) #define _MANY4(f, a, ...) (void)f a, _MANY5(f, __VA_ARGS__) #define _MANY5(f, a, ...) (void)f a, _MANY6(f, __VA_ARGS__) #define _MANY6(f, a, ...) (void)f a, _MANY7(f, __VA_ARGS__) #define _MANY7(f, a, ...) (void)f a, _MANY8(f, __VA_ARGS__) #define _MANY8(f, a, ...) (void)f a, _MANY9(f, __VA_ARGS__) #define _MANY9(f, a, ...) (void)f a \end{alltt}