\chapter{Exercises} \label{chap:Exercises} % TODO % % All exercises should be group with a chapter % % ▶ Recommended % M Matematically oriented % HM Higher matematical education required % % 00 Immediate % 10 Simple % 20 Medium % 30 Moderately hard % 40 Term project % 50 Research project % % ⁺ High risk of undershoot difficulty \begin{enumerate}[label=\textbf{\arabic*}.] \item {[\textit{M10}]} \textbf{Convergence of the Lucas Number ratios} Find an approximation for $\displaystyle{ \lim_{n \to \infty} \frac{L_{n + 1}}{L_n}}$, where $L_n$ is the $n^{\text{th}}$ Lucas Number \psecref{sec:Lucas numbers}. \( \displaystyle{ L_n \stackrel{\text{\tiny{def}}}{\text{=}} \left \{ \begin{array}{ll} 2 & \text{if} ~ n = 0 \\ 1 & \text{if} ~ n = 1 \\ L_{n - 1} + L_{n + 1} & \text{otherwise} \end{array} \right . }\) \item {[\textit{M12${}^+$}]} \textbf{Factorisation of factorials} Implement the function \vspace{-1em} \begin{alltt} void factor_fact(z_t n); \end{alltt} \vspace{-1em} \noindent which prints the prime factorisation of $n!$ (the $n^{\text{th}}$ factorial). The function shall be efficient for all $n$ where all primes $p \le n$ can be found efficiently. You can assume that $n \ge 2$. You should not evaluate $n!$. \item {[\textit{M20}]} \textbf{Reverse factorisation of factorials} You should already have solved ``Factorisation of factorials'' before you solve this problem. Implement the function \vspace{-1em} \begin{alltt} void unfactor_fact(z_t x, z_t *P, unsigned long long int *K, size_t n); \end{alltt} \vspace{-1em} \noindent which given the factorsation of $x!$ determines $x$. The factorisation of $x!$ is $\displaystyle{\prod_{i = 1}^{n} P_i^{K_i}}$, where $P_i$ is \texttt{P[i - 1]} and $K_i$ is \texttt{K[i - 1]}. \end{enumerate} \chapter{Solutions} \label{chap:Solutions} \begin{enumerate}[label=\textbf{\arabic*}.] \item \textbf{Convergence of the Lucas Number ratios} It would be a mistake to use bignum, and bigint in particular, to solve this problem. Good old mathematics is a much better solution. $$ \lim_{n \to \infty} \frac{L_{n + 1}}{L_n} = \lim_{n \to \infty} \frac{L_{n}}{L_{n - 1}} = \lim_{n \to \infty} \frac{L_{n - 1}}{L_{n - 2}} $$ $$ \frac{L_{n}}{L_{n - 1}} = \frac{L_{n - 1}}{L_{n - 2}} $$ $$ \frac{L_{n - 1} + L_{n - 2}}{L_{n - 1}} = \frac{L_{n - 1}}{L_{n - 2}} $$ $$ 1 + \frac{L_{n - 2}}{L_{n - 1}} = \frac{L_{n - 1}}{L_{n - 2}} $$ $$ 1 + \varphi = \frac{1}{\varphi} $$ So the ratio tends toward the golden ratio. \item \textbf{Factorisation of factorials} Base your implementation on \( \displaystyle{ n! = \prod_{p~\in~\textbf{P}}^{n} p^{k_p}, ~\text{where}~ k_p = \sum_{a = 1}^{\lfloor \log_p n \rfloor} \lfloor np^{-a} \rfloor. }\) There is no need to calculate $\lfloor \log_p n \rfloor$, you will see when $p^a > n$. \item \textbf{Reverse factorisation of factorials} $\displaystyle{x = \max_{p ~\in~ P} ~ p \cdot f(p, k_p)}$, where $k_p$ is the power of $p$ in the factorisation of $x!$. $f(p, k)$ is defined as: \vspace{1em} \hspace{-2.8ex} \begin{minipage}{\linewidth} \begin{algorithmic} \STATE $k^\prime \gets 0$ \WHILE{$k > 0$} \STATE $a \gets 0$ \WHILE{$p^a \le k$} \STATE $k \gets k - p^a$ \STATE $a \gets a + 1$ \ENDWHILE \STATE $k^\prime \gets k^\prime + p^{a - 1}$ \ENDWHILE \RETURN $k^\prime$ \end{algorithmic} \end{minipage} \vspace{1em} \end{enumerate}