aboutsummaryrefslogtreecommitdiffstats
path: root/doc/exercises.tex
diff options
context:
space:
mode:
Diffstat (limited to 'doc/exercises.tex')
-rw-r--r--doc/exercises.tex8
1 files changed, 6 insertions, 2 deletions
diff --git a/doc/exercises.tex b/doc/exercises.tex
index ebf8e91..14123d2 100644
--- a/doc/exercises.tex
+++ b/doc/exercises.tex
@@ -262,10 +262,13 @@ which calculates the totient of $n$. Its
formula is
\( \displaystyle{
- \varphi(n) = n \prod_{p \in \textbf{P} : p | n}
+ \varphi(n) = |n| \prod_{p \in \textbf{P} : p | n}
\left ( 1 - \frac{1}{p} \right ).
}\)
+Note that, $\varphi(-n) = \varphi(n)$, $\varphi(0) = 0$,
+and $\varphi(1) = 1$.
+
\end{enumerate}
@@ -671,7 +674,8 @@ So, if we set $a = n$ and $b = 1$, then we iterate
of all integers $p$, $2 \le p \le n$. For which $p$
that is prime, we set $a \gets a \cdot (p - 1)$ and
$b \gets b \cdot p$. After the iteration, $b | a$,
-and $\varphi(n) = \frac{a}{b}$.
+and $\varphi(n) = \frac{a}{b}$. However, if $n < 0$,
+then, $\varphi(n) = \varphi|n|$.