aboutsummaryrefslogtreecommitdiffstats
path: root/doc/exercises.tex
diff options
context:
space:
mode:
authorMattias Andrée <maandree@kth.se>2016-10-21 05:25:03 +0200
committerMattias Andrée <maandree@kth.se>2016-10-21 05:25:03 +0200
commit183bfa766f29b3eb46b01c7b6e82d71d822b02d5 (patch)
tree2bdc373a232ca80f1ce94d4f6b09860557683f83 /doc/exercises.tex
parentAdd exercise: [M13] The totient from factorisation (diff)
downloadlibzahl-183bfa766f29b3eb46b01c7b6e82d71d822b02d5.tar.gz
libzahl-183bfa766f29b3eb46b01c7b6e82d71d822b02d5.tar.bz2
libzahl-183bfa766f29b3eb46b01c7b6e82d71d822b02d5.tar.xz
manual: fix truncated sentence
Signed-off-by: Mattias Andrée <maandree@kth.se>
Diffstat (limited to '')
-rw-r--r--doc/exercises.tex6
1 files changed, 3 insertions, 3 deletions
diff --git a/doc/exercises.tex b/doc/exercises.tex
index 0dcab4b..3a9df19 100644
--- a/doc/exercises.tex
+++ b/doc/exercises.tex
@@ -286,9 +286,9 @@ Implement the function
which calculates the totient $t = \varphi(n)$, where
$n = \displaystyle{\prod_{i = 1}^n P_i^{K_i}} > 0$,
and $P_i = \texttt{P[i - 1]} \in \textbf{P}$,
-$K_i = \texttt{K[i - 1]} \ge 1$. All values \texttt{P}.
-\texttt{P} and \texttt{K} make up the prime factorisation
-of $n$.
+$K_i = \texttt{K[i - 1]} \ge 1$. All values \texttt{P}
+are mutually unique. \texttt{P} and \texttt{K} make up
+the prime factorisation of $n$.
You can use the following rules: