aboutsummaryrefslogtreecommitdiffstats
path: root/process.c
blob: d7d6ab83ee7e22eef936c856cdf53435b72d55bc (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/* See LICENSE file for copyright and license details. */
#include "common.h"
#include <stdatomic.h>

#if defined(__SSE4_1__) && defined(__SSSE3__) && defined(__SSE2__) && defined(__SHA__)
# define HAVE_X86_SHA_INTRINSICS
#endif


#ifdef HAVE_X86_SHA_INTRINSICS
# include <immintrin.h>
#endif


/**
 * Unified implementation (what can unified without performance impact)
 * of the chunk processing for all SHA-2 functions
 * 
 * @param  chunk      The data to process
 * @param  A          Wordsize-dependent constant, take a look at the code
 * @param  B          Wordsize-dependent constant, take a look at the code
 * @param  C          Wordsize-dependent constant, take a look at the code
 * @param  D          Wordsize-dependent constant, take a look at the code
 * @param  E          Wordsize-dependent constant, take a look at the code
 * @param  F          Wordsize-dependent constant, take a look at the code
 * @param  G          Wordsize-dependent constant, take a look at the code
 * @param  H          Wordsize-dependent constant, take a look at the code
 * @param  I          Wordsize-dependent constant, take a look at the code
 * @param  J          Wordsize-dependent constant, take a look at the code
 * @param  K          Wordsize-dependent constant, take a look at the code
 * @param  L          Wordsize-dependent constant, take a look at the code
 * @param  WORD_T     `__typeof()` on any wordsize-dependent variable
 * @param  WORD_SIZE  4 for 32-bit algorithms and 8 for 64-bit algorithms
 * @param  TRUNC      `TRUNC32` for 32-bit algorithms and `TRUNC64` for 64-bit algorithms
 * @param  k          Round constants
 * @param  w          Words
 * @param  h          Hash values
 * @param  work_h     Space for temporary hash values
 */
#define SHA2_IMPLEMENTATION(chunk, A, B, C, D, E, F, G, H, I, J, K, L, WORD_T, WORD_SIZE, TRUNC, k, w, h, work_h) \
	memcpy(work_h, h, sizeof(work_h));\
	\
	memset(w, 0, 16 * sizeof(*(w)));\
	for (i = 0; i < 16; i++)\
		for (j = 0; j < WORD_SIZE; j++)\
			w[i] |= ((WORD_T)(chunk[(i + 1) * WORD_SIZE - j - 1])) << (j << 3);\
	\
	for (i = 16; i < sizeof(k) / sizeof(*(k)); i++)	{\
		w[i] = w[i - 16] + w[i - 7];\
		w[i] += ROTR(w[i - 15], A) ^ ROTR(w[i - 15], B) ^ (w[i - 15] >> (C));\
		w[i] += ROTR(w[i - 2], D) ^ ROTR(w[i - 2], E) ^ (w[i - 2] >> (F));\
		w[i] = TRUNC(w[i]);\
	}\
	\
	for (i = 0; i < sizeof(k) / sizeof(*(k)); i++) {\
		s1 = work_h[6] ^ (work_h[4] & (work_h[5] ^ work_h[6]));\
		s1 += work_h[7] + k[i] + w[i];\
		s0 = (work_h[0] & work_h[1]) | (work_h[2] & (work_h[0] | work_h[1]));\
		s1 += ROTR(work_h[4], G) ^ ROTR(work_h[4], H) ^ ROTR(work_h[4], I);\
		s0 += ROTR(work_h[0], J) ^ ROTR(work_h[0], K) ^ ROTR(work_h[0], L);\
		\
		memmove(&work_h[1], work_h, 7 * sizeof(*(work_h)));\
		work_h[4] = TRUNC(work_h[4] + s1);\
		work_h[0] = TRUNC(s1 + s0);\
	}\
	\
	for (i = 0; i < 8; i++)\
		h[i] = TRUNC(h[i] + work_h[i]);


#ifdef HAVE_X86_SHA_INTRINSICS

static size_t
process_x86_sha256(struct libsha2_state *restrict state, const unsigned char *restrict data, size_t len)
{
	const __m128i SHUFFLE_MASK = _mm_set_epi64x(0x0C0D0E0F08090A0BULL, 0x0405060700010203ULL);
	register __m128i temp, s0, s1, msg, msg0, msg1, msg2, msg3;
	__m128i abef_orig, cdgh_orig;
	const unsigned char *restrict chunk;
	size_t off = 0;

	temp = _mm_shuffle_epi32(_mm_loadu_si128((const __m128i *)&state->h.b32[0]), 0xB1);
	s1   = _mm_shuffle_epi32(_mm_loadu_si128((const __m128i *)&state->h.b32[4]), 0x1B);
	s0   = _mm_alignr_epi8(temp, s1, 8);
	s1   = _mm_blend_epi16(s1, temp, 0xF0);

	for (; len - off >= state->chunk_size; off += state->chunk_size) {
		chunk = &data[off];

		abef_orig = s0;
		cdgh_orig = s1;

		msg = _mm_loadu_si128((const __m128i *)&chunk[0]);
		msg0 = _mm_shuffle_epi8(msg, SHUFFLE_MASK);
		msg = _mm_add_epi32(msg0, _mm_set_epi64x(0xE9B5DBA5B5C0FBCFULL, 0x71374491428A2F98ULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);

	        msg1 = _mm_loadu_si128((const __m128i *)&chunk[16]);
		msg1 = _mm_shuffle_epi8(msg1, SHUFFLE_MASK);
		msg = _mm_add_epi32(msg1, _mm_set_epi64x(0xAB1C5ED5923F82A4ULL, 0x59F111F13956C25BULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		msg0 = _mm_sha256msg1_epu32(msg0, msg1);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);

	        msg2 = _mm_loadu_si128((const __m128i *)&chunk[32]);
		msg2 = _mm_shuffle_epi8(msg2, SHUFFLE_MASK);
		msg = _mm_add_epi32(msg2, _mm_set_epi64x(0x550C7DC3243185BEULL, 0x12835B01D807AA98ULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);
		msg1 = _mm_sha256msg1_epu32(msg1, msg2);

		msg3 = _mm_loadu_si128((const __m128i *)&chunk[48]);
		msg3 = _mm_shuffle_epi8(msg3, SHUFFLE_MASK);
		msg = _mm_add_epi32(msg3, _mm_set_epi64x(0xC19BF1749BDC06A7ULL, 0x80DEB1FE72BE5D74ULL));
		temp = _mm_alignr_epi8(msg3, msg2, 4);
		msg0 = _mm_add_epi32(msg0, temp);
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		msg0 = _mm_sha256msg2_epu32(msg0, msg3);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);
		msg2 = _mm_sha256msg1_epu32(msg2, msg3);

	        msg = _mm_add_epi32(msg0, _mm_set_epi64x(0x240CA1CC0FC19DC6ULL, 0xEFBE4786E49B69C1ULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		temp = _mm_alignr_epi8(msg0, msg3, 4);
		msg1 = _mm_add_epi32(msg1, temp);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		msg1 = _mm_sha256msg2_epu32(msg1, msg0);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);
		msg3 = _mm_sha256msg1_epu32(msg3, msg0);

	        msg = _mm_add_epi32(msg1, _mm_set_epi64x(0x76F988DA5CB0A9DCULL, 0x4A7484AA2DE92C6FULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		temp = _mm_alignr_epi8(msg1, msg0, 4);
		msg2 = _mm_add_epi32(msg2, temp);
		msg2 = _mm_sha256msg2_epu32(msg2, msg1);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);
		msg0 = _mm_sha256msg1_epu32(msg0, msg1);

	        msg = _mm_add_epi32(msg2, _mm_set_epi64x(0xBF597FC7B00327C8ULL, 0xA831C66D983E5152ULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		temp = _mm_alignr_epi8(msg2, msg1, 4);
		msg3 = _mm_add_epi32(msg3, temp);
		msg3 = _mm_sha256msg2_epu32(msg3, msg2);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);
		msg1 = _mm_sha256msg1_epu32(msg1, msg2);

	        msg = _mm_add_epi32(msg3, _mm_set_epi64x(0x1429296706CA6351ULL,  0xD5A79147C6E00BF3ULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		temp = _mm_alignr_epi8(msg3, msg2, 4);
		msg0 = _mm_add_epi32(msg0, temp);
		msg0 = _mm_sha256msg2_epu32(msg0, msg3);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);
		msg2 = _mm_sha256msg1_epu32(msg2, msg3);

	        msg = _mm_add_epi32(msg0, _mm_set_epi64x(0x53380D134D2C6DFCULL, 0x2E1B213827B70A85ULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		temp = _mm_alignr_epi8(msg0, msg3, 4);
		msg1 = _mm_add_epi32(msg1, temp);
		msg1 = _mm_sha256msg2_epu32(msg1, msg0);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);
		msg3 = _mm_sha256msg1_epu32(msg3, msg0);

	        msg = _mm_add_epi32(msg1, _mm_set_epi64x(0x92722C8581C2C92EULL, 0x766A0ABB650A7354ULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		temp = _mm_alignr_epi8(msg1, msg0, 4);
		msg2 = _mm_add_epi32(msg2, temp);
		msg2 = _mm_sha256msg2_epu32(msg2, msg1);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);
		msg0 = _mm_sha256msg1_epu32(msg0, msg1);

	        msg = _mm_add_epi32(msg2, _mm_set_epi64x(0xC76C51A3C24B8B70ULL, 0xA81A664BA2BFE8A1ULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		temp = _mm_alignr_epi8(msg2, msg1, 4);
		msg3 = _mm_add_epi32(msg3, temp);
		msg3 = _mm_sha256msg2_epu32(msg3, msg2);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);
		msg1 = _mm_sha256msg1_epu32(msg1, msg2);

	        msg = _mm_add_epi32(msg3, _mm_set_epi64x(0x106AA070F40E3585ULL, 0xD6990624D192E819ULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		temp = _mm_alignr_epi8(msg3, msg2, 4);
		msg0 = _mm_add_epi32(msg0, temp);
		msg0 = _mm_sha256msg2_epu32(msg0, msg3);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);
		msg2 = _mm_sha256msg1_epu32(msg2, msg3);

	        msg = _mm_add_epi32(msg0, _mm_set_epi64x(0x34B0BCB52748774CULL, 0x1E376C0819A4C116ULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		temp = _mm_alignr_epi8(msg0, msg3, 4);
		msg1 = _mm_add_epi32(msg1, temp);
		msg1 = _mm_sha256msg2_epu32(msg1, msg0);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);
		msg3 = _mm_sha256msg1_epu32(msg3, msg0);

	        msg = _mm_add_epi32(msg1, _mm_set_epi64x(0x682E6FF35B9CCA4FULL, 0x4ED8AA4A391C0CB3ULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		temp = _mm_alignr_epi8(msg1, msg0, 4);
		msg2 = _mm_add_epi32(msg2, temp);
		msg2 = _mm_sha256msg2_epu32(msg2, msg1);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);

	        msg = _mm_add_epi32(msg2, _mm_set_epi64x(0x8CC7020884C87814ULL, 0x78A5636F748F82EEULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		temp = _mm_alignr_epi8(msg2, msg1, 4);
		msg3 = _mm_add_epi32(msg3, temp);
		msg3 = _mm_sha256msg2_epu32(msg3, msg2);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);

	        msg = _mm_add_epi32(msg3, _mm_set_epi64x(0xC67178F2BEF9A3F7ULL, 0xA4506CEB90BEFFFAULL));
		s1 = _mm_sha256rnds2_epu32(s1, s0, msg);
		msg = _mm_shuffle_epi32(msg, 0x0E);
		s0 = _mm_sha256rnds2_epu32(s0, s1, msg);

	        s0 = _mm_add_epi32(s0, abef_orig);
		s1 = _mm_add_epi32(s1, cdgh_orig);
	}

	temp = _mm_shuffle_epi32(s0, 0x1B);
	s1   = _mm_shuffle_epi32(s1, 0xB1);
	s0   = _mm_blend_epi16(temp, s1, 0xF0);
	s1   = _mm_alignr_epi8(s1, temp, 8);

	_mm_storeu_si128((__m128i *)&state->h.b32[0], s0);
	_mm_storeu_si128((__m128i *)&state->h.b32[4], s1);

	return off;
}

# if defined(__GNUC__)
__attribute__((__constructor__))
# endif
static int
have_sha_intrinsics(void)
{
        static volatile int ret = -1;
        static volatile atomic_flag spinlock = ATOMIC_FLAG_INIT;

	if (ret != -1)
		return ret;

        while (atomic_flag_test_and_set(&spinlock));

	if (ret != -1)
		goto out;

	int a = 7, b, c = 0, d;
	__asm__ volatile("cpuid" : "=a"(a), "=b"(b), "=c"(c), "=d"(d) : "a"(a), "c"(c));
	if (!(b & (1 << 29))) {
		ret = 0;
		goto out;
	}
	a = 1;
	__asm__ volatile("cpuid" : "=a"(a), "=b"(b), "=c"(c), "=d"(d) : "a"(a), "c"(c));
	if (!(c & (1 << 19)) || !(c & (1 << 0)) || !(d & (1 << 26))) {
		ret = 0;
		goto out;
	}
	ret = 1;

out:
	atomic_flag_clear(&spinlock);
	return ret;
}

#endif


size_t
libsha2_process(struct libsha2_state *restrict state, const unsigned char *restrict data, size_t len)
{
	const unsigned char *restrict chunk;
	size_t off = 0;

	if (state->algorithm <= LIBSHA2_256) {
		uint_least32_t s0, s1;
		size_t i, j;

#if defined(__GNUC__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wmemset-elt-size"
#endif
#define ROTR(X, N) TRUNC32(((X) >> (N)) | ((X) << (32 - (N))))

#ifdef HAVE_X86_SHA_INTRINSICS
		if (have_sha_intrinsics())
			return process_x86_sha256(state, data, len);
#endif

		for (; len - off >= state->chunk_size; off += state->chunk_size) {
			chunk = &data[off];
			SHA2_IMPLEMENTATION(chunk, 7, 18, 3, 17, 19, 10, 6, 11, 25, 2, 13, 22, uint_least32_t, 4,
			                    TRUNC32, state->k.b32, state->w.b32, state->h.b32, state->work_h.b32);
		}

#undef ROTR
#if defined(__GNUC__)
# pragma GCC diagnostic pop
#endif

	} else {
		uint_least64_t s0, s1;
		size_t i, j;

#define ROTR(X, N) TRUNC64(((X) >> (N)) | ((X) << (64 - (N))))

		for (; len - off >= state->chunk_size; off += state->chunk_size) {
			chunk = &data[off];
			SHA2_IMPLEMENTATION(chunk, 1, 8, 7, 19, 61, 6, 14, 18, 41, 28, 34, 39, uint_least64_t, 8,
			                    TRUNC64, state->k.b64, state->w.b64, state->h.b64, state->work_h.b64);
		}

#undef ROTR
	}

	return off;
}