diff options
author | Mattias Andrée <maandree@kth.se> | 2023-02-05 01:49:25 +0100 |
---|---|---|
committer | Mattias Andrée <maandree@kth.se> | 2023-02-05 01:49:25 +0100 |
commit | 32c96afc3c2c78e15c0e05560b4e08f8cdc2437e (patch) | |
tree | 3b4f9b8588cfb574ef420bc5667c3d4a177b58d3 /equations.c | |
download | librifunktionsteckensnittsglyfrasteriseringsprogrambiblioteket-32c96afc3c2c78e15c0e05560b4e08f8cdc2437e.tar.gz librifunktionsteckensnittsglyfrasteriseringsprogrambiblioteket-32c96afc3c2c78e15c0e05560b4e08f8cdc2437e.tar.bz2 librifunktionsteckensnittsglyfrasteriseringsprogrambiblioteket-32c96afc3c2c78e15c0e05560b4e08f8cdc2437e.tar.xz |
First commit
Signed-off-by: Mattias Andrée <maandree@kth.se>
Diffstat (limited to '')
-rw-r--r-- | equations.c | 609 |
1 files changed, 609 insertions, 0 deletions
diff --git a/equations.c b/equations.c new file mode 100644 index 0000000..571fc26 --- /dev/null +++ b/equations.c @@ -0,0 +1,609 @@ +/* See LICENSE file for copyright and license details. */ +#include "common.h" +#ifndef TEST + + +CONST_FUNCTION +static double +refine_cubic_solution(double t, double a, double b, double c, double d) +{ + size_t i; + double x; + for (i = 0; x = t*t*t*a + t*t*b + t*c + d, !iszeroish(x) && i < 10; i++) + t -= x / (t*t*(a*3) + t*(b*2) + c); + return t; +} + + +static size_t +solve_cubic_with_1_known_root(double *ts, double a, double b, double t1) +{ + /* + * (t³ + t²a + tb + c) / (t - t₁) = t² + tp + q + * t³ + t²a + tb + c = (t² + tp + q)(t - t₁) + * t³ + t²a + tb + c = t²(t - t₁) + tp(t - t₁) + q(t - t₁) + * t³ + t²a + tb + c = t³ - t²t₁ + t²p - tpt₁ + tq - qt₁ + * t³ + t²a + tb + c = t³ + t²(p - t₁) + t(q - pt₁) - qt₁ + * + * ⎧a = p - t₁ + * ⎨b = q - pt₁ + * ⎩c = -qt₁ + * + * ⎧a + t₁ = p + * ⎨b + pt₁ = q + * ⎩c = -qt₁ + * + * ⎰a + t₁ = p + * ⎱b + pt₁ = q + * + * ⎰p = a + t₁ + * ⎱q = b + pt₁ + */ + double p = a + t1; + double q = b + p * t1; + + return solve_quadratic(ts, 1, p, q); +} + + +static size_t +solve_cubic_with_2_known_roots(double *ts, double a, double b, double c, double t1, double t2) +{ + /* + * (t - t₁)(t - t₂)(t - t₃) + * (t - t₁)t(t - t₃) - (t - t₁)t₂(t - t₃) + * (t - t₁)(t² - t₃t) - (t - t₁)(t₂t - t₂t₃) + * (t - t₁)t² - (t - t₁)t₃t - (t - t₁)t₂t + (t - t₁)t₂t₃ + * t³ - t₁t² - t₃t² + t₁t₃t - t₂t² + t₁t₂t + t₂t₃t - t₁t₂t₃ + * t³ - t²(t₁ + t₂ + t₃) + t(t₁t₂ + t₁t₃ + t₂t₃) - t₁t₂t₃ + * + * ⎧a = -t₁ - t₂ - t₃ + * ⎨b = t₁t₂ + t₁t₃ + t₂t₃ + * ⎩c = -t₁t₂t₃ + * + * ⎧t₃ = -t₁ - t₂ - a + * ⎨t₃ = (b - t₁t₂)/(t₁ + t₂) + * ⎩t₃ = -c/t₁t₂ + */ + double t12sum = t1 + t2; + double t12prod = t1 * t2; + double t3a = -a - t12sum; + double t3b = iszeroish(t12sum) ? t3a : (b - t12prod) / t12sum; + double t3c = iszeroish(t12prod) ? t3a : -c / t12prod; + if (iszeroish(t3a - t3b) && iszeroish(t3a - t3c)) { + ts[0] = (t3a + t3b + t3c) / 3.0; + return 0.0 <= ts[0] && ts[0] <= 1.0; + } + t1 = 0.5 * (t1 + t2); + t1 = refine_cubic_solution(t1, 1.0, a, b, c); + return solve_cubic_with_1_known_root(ts, a, b, t1); +} + + +size_t +solve_cubic(double *ts, double a, double b, double c, double d) +{ + double t1, t2, t3; + unsigned int solutions = 0; + size_t n = 0; + + double u = 1 / (a * -3); + + double D0 = b*b - 3*(a*c); + double D1 = b*b*b - (4.5*b)*(a*c) + (13.5*a)*(a*d); + + double kk = D1*D1 - D0*D0*D0; + + double r, i; + + double Kr; + if (kk >= 0) { + Kr = D1 < 0 ? cbrt(D1 + sqrt(kk)) : cbrt(D1 - sqrt(kk)); + } else { + double ki = sqrt(-kk); + double h = pow(D1*D1 + ki*ki, 1.0 / 6.0); + double v = (0.1 / 0.3) * atan2(ki, D1); + + Kr = h * cos(v); + + if (1 /* || fabs(cos(v)) > 1.0 - TOLERANCE */) { + double Ki = h * sin(v); + double t = 1.0 / (Kr * Kr + Ki * Ki); + double m = t * D0 + 1; + if (iszeroish(Ki - D0 * Ki * t)) { + ts[n] = u * (b + Kr + D0 * Kr * t); + ts[n] = t1 = refine_cubic_solution(ts[n], a, b, c, d); + solutions |= 1; + n += 0.0 <= ts[n] && ts[n] <= 1.0; + } + if (iszeroish(Ki - sqrt(3.0) * Kr)) { + ts[n] = u * (b - (0.5 * Kr + sqrt(0.75) * Ki) * m); + ts[n] = t2 = refine_cubic_solution(ts[n], a, b, c, d); + solutions |= 2; + n += 0.0 <= ts[n] && ts[n] <= 1.0; + } + if (iszeroish(Ki + sqrt(3.0) * Kr)) { + ts[n] = u * (b - (0.5 * Kr - sqrt(0.75) * Ki) * m); + ts[n] = t3 = refine_cubic_solution(ts[n], a, b, c, d); + solutions |= 4; + n += 0.0 <= ts[n] && ts[n] <= 1.0; + } + + /* Sometimes the maths doesn't work well enough */ + if (solutions != 7) { +#if defined(__GNUC__) && !defined(__clang__) +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Wmaybe-uninitialized" +#elif defined(__clang__) +# pragma clang diagnostic push +# pragma clang diagnostic ignored "-Wconditional-uninitialized" +#endif + switch (solutions) { + case 1: + n += solve_cubic_with_1_known_root(&ts[n], b / a, c / a, t1); + break; + case 2: + n += solve_cubic_with_1_known_root(&ts[n], b / a, c / a, t2); + break; + case 4: + n += solve_cubic_with_1_known_root(&ts[n], b / a, c / a, t3); + break; + case 7 - 1: + n += solve_cubic_with_2_known_roots(&ts[n], b / a, c / a, d / a, t2, t3); + break; + case 7 - 2: + n += solve_cubic_with_2_known_roots(&ts[n], b / a, c / a, d / a, t1, t3); + break; + case 7 - 4: + n += solve_cubic_with_2_known_roots(&ts[n], b / a, c / a, d / a, t1, t2); + break; + } +#if defined(__GNUC__) && !defined(__clang__) +# pragma GCC diagnostic pop +#elif defined(__clang__) +# pragma clang diagnostic pop +#endif + } + return n; + } + } + + if (!iszeroish(Kr)) { + r = Kr + D0 / Kr; + i = u * sqrt(0.75) * (Kr - D0 / Kr); + + real_case: + ts[n] = u * (b + r); + ts[n] = t1 = refine_cubic_solution(ts[n], a, b, c, d); + n += 0.0 <= ts[n] && ts[n] <= 1.0; + if (iszeroish(i)) { + ts[n] = u * (b - 0.5 * r); + ts[n] = refine_cubic_solution(ts[n], a, b, c, d); + n += 0.0 <= ts[n] && ts[n] <= 1.0; + return n; + } else { + n += solve_cubic_with_1_known_root(&ts[n], b / a, c / a, t1); + return n; + } + } else { + double D0divKr = D0 / Kr; + r = Kr + D0divKr; + i = u * sqrt(0.75) * (Kr - D0divKr); + if (isfinite(D0divKr)) /* NOT -ffast-math compatible */ + goto real_case; + + ts[n] = u * b; + ts[n] = t1 = refine_cubic_solution(ts[n], a, b, c, d); + n += 0.0 <= ts[n] && ts[n] <= 1.0; + n += solve_cubic_with_1_known_root(&ts[n], b / a, c / a, t1); + return n; + } +} + + +size_t +solve_quadratic(double *ts, double a, double b, double c) +{ + size_t n = 0; + + double negahalf_p = -0.5 * (b / a); + double q = c / a; + + double D = negahalf_p * negahalf_p - q; + + if (D < 0) { + if (D < -TOLERANCE) + return 0; + + ts[n] = negahalf_p; + n += (0.0 <= ts[n] && ts[n] <= 1.0); + + return n; + } else { + ts[n] = negahalf_p + sqrt(D); + n += (0.0 <= ts[n] && ts[n] <= 1.0); + + ts[n] = negahalf_p - sqrt(D); + n += (0.0 <= ts[n] && ts[n] <= 1.0); + + return n; + } +} + + +size_t +solve_linear(double *ts, double a, double b) +{ + ts[0] = -b / a; + return (0.0 <= ts[0] && ts[0] <= 1.0); +} + + +#else + + +#define Re(X) X, 0 +#define Im(X) 0, X +#define Cx(R, I) R, I + +static void +check_cubic(double r1, double i1, double r2, double i2, double r3, double i3, double k, int strict_real) +{ + size_t nexpected = 0, ngot, i, j; + double expected[3], got[3]; + double error, maxerror = 0; + double ra, rb, rc; + double ia, ib, ic; + int found[3], correct; + + if (iszeroish(i1)) + expected[nexpected++] = r1; + if (iszeroish(i2)) + expected[nexpected++] = r2; + if (iszeroish(i3)) + expected[nexpected++] = r3; + + /* + * k(t₁ - t)(t₂ - t)(t₃ - t) = 0 + * k(t₁ - t)t₂(t₃ - t) - k(t₁ - t)t(t₃ - t) = 0 + * kt₂(t₁ - t)(t₃ - t) - kt(t₁ - t)(t₃ - t) = 0 + * kt₂(t₁(t₃ - t) - t(t₃ - t)) - kt(t₁(t₃ - t) - t(t₃ - t)) = 0 + * kt₂(t₁t₃ - t₁t - tt₃ + t²) - kt(t₁t₃ - t₁t - tt₃ + t²) = 0 + * kt₂(t₁t₃ - t₁t - tt₃ + t²) + kt(-t₁t₃ + t₁t + tt₃ - t²) = 0 + * kt₂t₁t₃ - kt₂t₁t - kt₂tt₃ + kt₂t² - ktt₁t₃ + ktt₁t + kt²t₃ - kt³ = 0 + * kt₂t₁t₃ - kt₂t₁t¹ - kt₂t¹t₃ + kt₂t² - kt¹t₁t₃ + kt²t₁ + kt²t₃ - kt³ = 0 + * -kt³ + kt₂t² + kt²t₁ + kt²t₃ - kt₂t₁t¹ - kt₂t¹t₃ - kt¹t₁t₃ + kt₂t₁t₃ = 0 + * kt³ - kt₂t² - kt²t₁ - kt²t₃ + kt₂t₁t¹ + kt₂t¹t₃ + kt¹t₁t₃ - kt₂t₁t₃ = 0 + * t³k - t²k(t₁ + t₂ + t₃) + t¹k(t₂t₁ + t₂t₃ + t₁t₃) - kt₂t₁t₃ = 0 + * ⎧a := t₁ + t₂ + t₃ ⎫ + * ⎨b := t₁t₂ + t₁t₃ + t₂t₃⎬ + * ⎩c := t₁t₂t₃ ⎭ + * t³k - t²ka + t¹kb - kc = 0 + */ + + ra = r1 + r2 + r3; + ia = i1 + i2 + i3; + rb = r1*r2 - i1*i2 + r1*r3 - i1*i3 + r2*r3 - i2*i3; + ib = r1*i2 + i1*r2 + r1*i3 + i1*r3 + r2*i3 + i2*r3; + rc = r1*r2*r3 - r1*i2*i3 - i1*r2*i3 - i1*i2*r3; + ic = r1*r2*i3 + r1*i2*r3 + i1*r2*r3 - i1*i2*i3; + + if (strict_real) { + ASSERT(iszeroish(ia)); + ASSERT(iszeroish(ib)); + ASSERT(iszeroish(ic)); + } else { + if (!iszeroish(ia) || !iszeroish(ib) || !iszeroish(ic)) + return; + } + + ngot = solve_cubic(got, k, -k*ra, k*rb, -k*rc); + + for (i = 0; i < sizeof(found) / sizeof(*found); i++) + found[i] = (i >= nexpected || expected[i] < 0.0 + TOLERANCE || expected[i] > 1.0 - TOLERANCE); + if (!nexpected) { + ASSERT(!ngot); + return; + } + for (i = 0; i < ngot; i++) { + correct = (got[i] < 0.0 + TOLERANCE || got[i] > 1.0 - TOLERANCE); + error = fabs(got[i] - expected[0]); + for (j = 0; j < nexpected; j++) { + error = fmin(error, fabs(got[i] - expected[j])); + if (tolerant_eq(got[i], expected[j])) + found[j] = correct = 1; + } + if (!correct) + maxerror = fmax(maxerror, error); + } + if (!found[0] || !found[1] || !found[2] || !tolerant_eq(maxerror, 0)) { + fprintf(stderr, "\n%lg, %lg, %lg, %lg, %lg, %lg, %lg\n", r1, i1, r2, i2, r3, i3, k); + fprintf(stderr, "\t(%la, %la, %la, %la, %la, %la, %la)\n", r1, i1, r2, i2, r3, i3, k); + fprintf(stderr, "\tmaxerror: %lf (%la)\n", maxerror, maxerror); + fprintf(stderr, "\tfound: %i, %i, %i\n", found[0], found[1], found[2]); + fprintf(stderr, "\tgot: %zu\n", ngot); + for (i = 0; i < ngot; i++) + fprintf(stderr, "\t\t%lf (%la)\n", got[i], got[i]); + fprintf(stderr, "\texpected: %zu\n", nexpected); + for (i = 0; i < nexpected; i++) + fprintf(stderr, "\t\t%lf (%la)\n", expected[i], expected[i]); + } + ASSERT(found[0]); + ASSERT(found[1]); + ASSERT(found[2]); + ASSERT(tolerant_eq(maxerror, 0)); +} + + +static void +check_quadratic(double r1, double i1, double r2, double i2, double k, int strict_real) +{ + size_t nexpected = 0, ngot, i, j; + double expected[2], got[2]; + double error, maxerror = 0; + double ra, rb; + double ia, ib; + int found[2], correct; + + if (iszeroish(i1)) + expected[nexpected++] = r1; + if (iszeroish(i2)) + expected[nexpected++] = r2; + + /* + * k(t₁ - t)(t₂ - t) = 0 + * k(t₁(t₂ - t) - t(t₂ - t)) = 0 + * k(t₁t₂ - t¹t₁ - t¹t₂ + t²) = 0 + * kt₁t₂ - t¹kt₁ - t¹kt₂ + kt² = 0 + * t²k - t¹kt₁ - t¹kt₂ + kt₁t₂ = 0 + * t²k - t¹k(t₁ + kt₂) + kt₁t₂ = 0 + * ⎰a := t₁ + t₂⎱ + * ⎱b := t₁t₂ ⎰ + * t²k - t¹ka + kb = 0 + */ + + ra = r1 + r2; + ia = i1 + i2; + rb = r1*r2 - i1*i2; + ib = r1*i2 + i1*r2; + + if (strict_real) { + ASSERT(iszeroish(ia)); + ASSERT(iszeroish(ib)); + } else { + if (!iszeroish(ia) || !iszeroish(ib)) + return; + } + + ngot = solve_quadratic(got, k, -k*ra, k*rb); + + for (i = 0; i < sizeof(found) / sizeof(*found); i++) + found[i] = (i >= nexpected || expected[i] < 0.0 + TOLERANCE || expected[i] > 1.0 - TOLERANCE); + if (!nexpected) { + ASSERT(!ngot); + return; + } + for (i = 0; i < ngot; i++) { + correct = (got[i] < 0.0 + TOLERANCE || got[i] > 1.0 - TOLERANCE); + error = fabs(got[i] - expected[0]); + for (j = 0; j < nexpected; j++) { + error = fmin(error, fabs(got[i] - expected[j])); + if (tolerant_eq(got[i], expected[j])) + found[j] = correct = 1; + } + if (!correct) + maxerror = fmax(maxerror, error); + } + if (!found[0] || !found[1] || !tolerant_eq(maxerror, 0)) { + fprintf(stderr, "\n%lg, %lg, %lg, %lg, %lg\n", r1, i1, r2, i2, k); + fprintf(stderr, "\t(%la, %la, %la, %la, %la)\n", r1, i1, r2, i2, k); + fprintf(stderr, "\tmaxerror: %lf (%la)\n", maxerror, maxerror); + fprintf(stderr, "\tfound: %i, %i\n", found[0], found[1]); + fprintf(stderr, "\tgot: %zu\n", ngot); + for (i = 0; i < ngot; i++) + fprintf(stderr, "\t\t%lf (%la)\n", got[i], got[i]); + fprintf(stderr, "\texpected: %zu\n", nexpected); + for (i = 0; i < nexpected; i++) + fprintf(stderr, "\t\t%lf (%la)\n", expected[i], expected[i]); + } + ASSERT(found[0]); + ASSERT(found[1]); + ASSERT(tolerant_eq(maxerror, 0)); +} + + +static void +check_linear(double r1, double i1, double k, int strict_real) +{ + size_t nexpected = 0, ngot, i; + double expected[1] = {999999}, got[1]; + double ra; + double ia; + + if (iszeroish(i1) && 0.0 <= r1 && r1 <= 1.0) + expected[nexpected++] = r1; + + /* + * k(t - t₁) = 0 + * kt - kt₁ = 0 + */ + + ra = r1; + ia = i1; + + if (strict_real) { + ASSERT(iszeroish(ia)); + } else { + if (!iszeroish(ia)) + return; + } + + ngot = solve_linear(got, k, -k*ra); + + ASSERT(ngot == nexpected); + for (i = 0; i < ngot; i++) + ASSERT(eq(got[i], expected[i])); +} + + +static void +check_cubic_randomly(void) +{ + double r1 = rand() / (double)RAND_MAX; + double i1 = rand() / (double)RAND_MAX; + double r2 = rand() / (double)RAND_MAX; + double i2 = rand() / (double)RAND_MAX; + double r3 = rand() / (double)RAND_MAX; + double i3 = rand() / (double)RAND_MAX; + double k = rand() / (double)RAND_MAX; + r1 = r1 * 3 - 1; + i1 = i1 * 3 - 1; + r2 = r2 * 3 - 1; + i2 = i2 * 3 - 1; + r3 = r3 * 3 - 1; + i3 = i3 * 3 - 1; + k = k * 3 - 1; + k += iszeroish(k); + + check_cubic(Cx(r1, i1), Cx(r2, i2), Cx(r3, i3), k, 0); + check_cubic(Im(i1), Cx(r2, i2), Cx(r3, i3), k, 0); + check_cubic(Re(r1), Cx(r2, i2), Cx(r3, i3), k, 0); + check_cubic(Cx(r1, i1), Im(i2), Cx(r3, i3), k, 0); + check_cubic(Im(i1), Im(i2), Cx(r3, i3), k, 0); + check_cubic(Re(r1), Im(i2), Cx(r3, i3), k, 0); + check_cubic(Cx(r1, i1), Re(r2), Cx(r3, i3), k, 0); + check_cubic(Im(i1), Re(r2), Cx(r3, i3), k, 0); + check_cubic(Re(r1), Re(r2), Cx(r3, i3), k, 0); + check_cubic(Cx(r1, i1), Cx(r1, i1), Cx(r3, i3), k, 0); + check_cubic(Im(i1), Im(i1), Cx(r3, i3), k, 0); + check_cubic(Re(r1), Re(r1), Cx(r3, i3), k, 0); + check_cubic(Cx(r1, i1), Cx(r3, i3), Cx(r3, i3), k, 0); + check_cubic(Im(i1), Cx(r3, i3), Cx(r3, i3), k, 0); + check_cubic(Re(r1), Cx(r3, i3), Cx(r3, i3), k, 0); + + check_cubic(Cx(r1, i1), Cx(r2, i2), Im(i3), k, 0); + check_cubic(Im(i1), Cx(r2, i2), Im(i3), k, 0); + check_cubic(Re(r1), Cx(r2, i2), Im(i3), k, 0); + check_cubic(Cx(r1, i1), Im(i2), Im(i3), k, 0); + check_cubic(Im(i1), Im(i2), Im(i3), k, 0); + check_cubic(Re(r1), Im(i2), Im(i3), k, 0); + check_cubic(Cx(r1, i1), Re(r2), Im(i3), k, 0); + check_cubic(Im(i1), Re(r2), Im(i3), k, 0); + check_cubic(Re(r1), Re(r2), Im(i3), k, 0); + check_cubic(Cx(r1, i1), Cx(r1, i1), Im(i3), k, 0); + check_cubic(Im(i1), Im(i1), Im(i3), k, 0); + check_cubic(Re(r1), Re(r1), Im(i3), k, 0); + check_cubic(Cx(r1, i1), Im(i3), Im(i3), k, 0); + check_cubic(Im(i1), Im(i3), Im(i3), k, 0); + check_cubic(Re(r1), Im(i3), Im(i3), k, 0); + + check_cubic(Cx(r1, i1), Cx(r2, i2), Re(r3), k, 0); + check_cubic(Im(i1), Cx(r2, i2), Re(r3), k, 0); + check_cubic(Re(r1), Cx(r2, i2), Re(r3), k, 0); + check_cubic(Cx(r1, i1), Im(i2), Re(r3), k, 0); + check_cubic(Im(i1), Im(i2), Re(r3), k, 0); + check_cubic(Re(r1), Im(i2), Re(r3), k, 0); + check_cubic(Cx(r1, i1), Re(r2), Re(r3), k, 0); + check_cubic(Im(i1), Re(r2), Re(r3), k, 0); + check_cubic(Re(r1), Re(r2), Re(r3), k, 1); + check_cubic(Cx(r1, i1), Cx(r1, i1), Re(r3), k, 0); + check_cubic(Im(i1), Im(i1), Re(r3), k, 0); + check_cubic(Re(r1), Re(r1), Re(r3), k, 1); + check_cubic(Cx(r1, i1), Re(r3), Re(r3), k, 0); + check_cubic(Im(i1), Re(r3), Re(r3), k, 0); + check_cubic(Re(r1), Re(r3), Re(r3), k, 1); + + check_cubic(Cx(r1, i1), Cx(r1, i1), Cx(r1, i1), k, 0); + check_cubic(Im(i1), Im(i1), Im(i1), k, 0); + check_cubic(Re(r1), Re(r1), Re(r1), k, 1); +} + + +static void +check_quadratic_randomly(void) +{ + double r1 = rand() / (double)RAND_MAX; + double i1 = rand() / (double)RAND_MAX; + double r2 = rand() / (double)RAND_MAX; + double i2 = rand() / (double)RAND_MAX; + double k = rand() / (double)RAND_MAX; + r1 = r1 * 3 - 1; + i1 = i1 * 3 - 1; + r2 = r2 * 3 - 1; + i2 = i2 * 3 - 1; + k = k * 3 - 1; + k += iszeroish(k); + + check_quadratic(Cx(r1, i1), Cx(r2, i2), k, 0); + check_quadratic(Im(i1), Cx(r2, i2), k, 0); + check_quadratic(Re(r1), Cx(r2, i2), k, 0); + check_quadratic(Cx(r1, i1), Im(i2), k, 0); + check_quadratic(Im(i1), Im(i2), k, 0); + check_quadratic(Re(r1), Im(i2), k, 0); + check_quadratic(Cx(r1, i1), Re(r2), k, 0); + check_quadratic(Im(i1), Re(r2), k, 0); + check_quadratic(Re(r1), Re(r2), k, 1); + check_quadratic(Cx(r1, i1), Cx(r1, i1), k, 0); + check_quadratic(Im(i1), Im(i1), k, 0); + check_quadratic(Re(r1), Re(r1), k, 1); +} + + +static void +check_linear_randomly(void) +{ + double r1 = rand() / (double)RAND_MAX; + double i1 = rand() / (double)RAND_MAX; + double k = rand() / (double)RAND_MAX; + r1 = r1 * 3 - 1; + i1 = i1 * 3 - 1; + k = k * 3 - 1; + k += iszeroish(k); + + check_linear(Cx(r1, i1), k, 0); + check_linear(Im(i1), k, 0); + check_linear(Re(r1), k, 0); +} + + +int +main(void) +{ + size_t i; + + void *r = malloc(1); + srand((unsigned)(uintptr_t)r); + free(r); + + check_linear(Re(0), 1.0, 1); + check_linear(Re(0), 1.5, 1); + check_linear(Re(0), 0.5, 1); + check_linear(Re(0), -0.5, 1); + check_linear(Re(0), -1.0, 1); + check_linear(Re(0), -1.5, 1); + for (i = 0; i < 100000UL; i++) + check_linear_randomly(); + + check_quadratic(Re(0), Re(0), 1.0, 1); + check_quadratic(Re(0), Re(0), 1.5, 1); + check_quadratic(Re(0), Re(0), 0.5, 1); + check_quadratic(Re(0), Re(0), -0.5, 1); + check_quadratic(Re(0), Re(0), -1.0, 1); + check_quadratic(Re(0), Re(0), -1.5, 1); + for (i = 0; i < 10000000UL; i++) + check_quadratic_randomly(); + + check_cubic(Re(0), Re(0), Re(0), 1.0, 1); + check_cubic(Re(0), Re(0), Re(0), 1.5, 1); + check_cubic(Re(0), Re(0), Re(0), 0.5, 1); + check_cubic(Re(0), Re(0), Re(0), -0.5, 1); + check_cubic(Re(0), Re(0), Re(0), -1.0, 1); + check_cubic(Re(0), Re(0), Re(0), -1.5, 1); + for (i = 0; i < 1000000UL; i++) + check_cubic_randomly(); + + return 0; +} + + +#endif |