1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
/* See LICENSE file for copyright and license details. */
#include "libred.h"
#include <math.h>
#include <time.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#if __GNUC__
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wunsuffixed-float-constants"
#endif
/* Select clock. */
#if defined(DO_NOT_USE_COARSEC_CLOCK) || !defined(CLOCK_REALTIME_COARSE)
# ifdef CLOCK_REALTIME_COARSE
# undef CLOCK_REALTIME_COARSE
# endif
# define CLOCK_REALTIME_COARSE CLOCK_REALTIME
#endif
/**
* Get current Julian Centuries time (100 Julian days since J2000.)
*
* @return The current Julian Centuries time.
*
* @throws 0 On success.
* @throws Any error specified for clock_gettime(3) on error.
*/
static double
julian_centuries()
{
struct timespec now;
double tm;
if (clock_gettime(CLOCK_REALTIME_COARSE, &now))
return 0.0;
tm = (double)(now.tv_nsec) / 1000000000.0 + (double)(now.tv_sec);
tm = (tm / 86400.0 + 2440587.5 - 2451545.0) / 36525.0;
return errno = 0, tm;
}
/**
* Convert a Julian Centuries timestamp to a Julian Day timestamp.
*
* @param tm The time in Julian Centuries
* @return The time in Julian Days
*/
static inline double
julian_centuries_to_julian_day(double tm)
{
return tm * 36525.0 + 2451545.0;
}
/**
* Convert an angle (or otherwise) from degrees to radians.
*
* @param deg The angle in degrees.
* @param The angle in radians.
*/
static inline double
radians(double deg)
{
return deg * (double)M_PI / 180.0;
}
/**
* Convert an angle (or otherwise) from radians to degrees.
*
* @param rad The angle in radians.
* @param The angle in degrees.
*/
static inline double
degrees(double rad)
{
return rad * 180.0 / (double)M_PI;
}
/**
* Calculates the Sun's elevation from the solar hour angle
*
* @param longitude The longitude in degrees eastwards.
* from Greenwich, negative for westwards.
* @param declination The declination, in radians.
* @param hour_angle The solar hour angle, in radians.
* @return The Sun's elevation, in radians.
*/
static inline double
elevation_from_hour_angle(double latitude, double declination, double hour_angle)
{
double rc = cos(radians(latitude));
rc *= cos(hour_angle) * cos(declination);
rc += sin(radians(latitude)) * sin(declination);
return asin(rc);
}
/**
* Calculates the Sun's geometric mean longitude.
*
* @param tm The time in Julian Centuries.
* @return The Sun's geometric mean longitude in radians.
*/
static inline double
sun_geometric_mean_longitude(double tm)
{
double rc = fmod(pow(0.0003032 * tm, 2.0) + 36000.76983 * tm + 280.46646, 360.0);
#if defined(TIMETRAVELLER)
rc = rc < 0.0 ? (rc + 360.0) : rc;
#endif
return radians(rc);
}
/**
* Calculates the Sun's geometric mean anomaly.
*
* @param tm The time in Julian Centuries.
* @return The Sun's geometric mean anomaly in radians.
*/
static inline double
sun_geometric_mean_anomaly(double tm)
{
return radians(pow(-0.0001537 * tm, 2.0) + 35999.05029 * tm + 357.52911);
}
/**
* Calculates the Earth's orbit eccentricity.
*
* @param tm The time in Julian Centuries.
* @return The Earth's orbit eccentricity.
*/
static inline double
earth_orbit_eccentricity(double tm)
{
return pow(-0.0000001267 * tm, 2.0) - 0.000042037 * tm + 0.016708634;
}
/**
* Calculates the Sun's equation of the centre, the difference
* between the true anomaly and the mean anomaly.
*
* @param tm The time in Julian Centuries.
* @return The Sun's equation of the centre, in radians.
*/
static inline double
sun_equation_of_centre(double tm)
{
double a = sun_geometric_mean_anomaly(tm), rc;
rc = sin(1.0 * a) * (pow(-0.000014 * tm, 2.0) - 0.004817 * tm + 1.914602);
rc += sin(2.0 * a) * (-0.000101 * tm + 0.019993);
rc += sin(3.0 * a) * 0.000289;
return radians(rc);
}
/**
* Calculates the Sun's real longitudinal position.
*
* @param tm The time in Julian Centuries.
* @return The longitude, in radians.
*/
static inline double
sun_real_longitude(double tm)
{
return sun_geometric_mean_longitude(tm) + sun_equation_of_centre(tm);
}
/**
* Calculates the Sun's apparent longitudinal position.
*
* @param tm The time in Julian Centuries.
* @return The longitude, in radians.
*/
static inline double
sun_apparent_longitude(double tm)
{
double rc = degrees(sun_real_longitude(tm)) - 0.00569;
return radians(rc - 0.00478 * sin(radians(-1934.136 * tm + 125.04)));
}
/**
* Calculates the mean ecliptic obliquity of the Sun's
* apparent motion without variation correction.
*
* @param tm The time in Julian Centuries.
* @return The uncorrected mean obliquity, in radians.
*/
static double
mean_ecliptic_obliquity(double tm)
{
double rc = pow(0.001813 * tm, 3.0) - pow(0.00059 * tm, 2.0) - 46.815 * tm + 21.448;
return radians(23.0 + (26.0 + rc / 60.0) / 60.0);
}
/**
* Calculates the mean ecliptic obliquity of the Sun's
* parent motion with variation correction.
*
* @param tm The time in Julian Centuries.
* @return The mean obliquity, in radians.
*/
static double
corrected_mean_ecliptic_obliquity(double tm)
{
double rc = 0.00256 * cos(radians(-1934.136 * tm + 125.04));
return radians(rc + degrees(mean_ecliptic_obliquity(tm)));
}
/**
* Calculates the Sun's declination.
*
* @param tm The time in Julian Centuries.
* @return The Sun's declination, in radian.
*/
static inline double
solar_declination(double tm)
{
double rc = sin(corrected_mean_ecliptic_obliquity(tm));
return asin(rc * sin(sun_apparent_longitude(tm)));
}
/**
* Calculates the equation of time, the discrepancy
* between apparent and mean solar time.
*
* @param tm The time in Julian Centuries.
* @return The equation of time, in degrees.
*/
static inline double
equation_of_time(double tm)
{
double l = sun_geometric_mean_longitude(tm);
double e = earth_orbit_eccentricity(tm);
double m = sun_geometric_mean_anomaly(tm);
double y = pow(tan(corrected_mean_ecliptic_obliquity(tm) / 2.0), 2.0);
double rc = y * sin(2.0 * l);
rc += (4.0 * y * cos(2.0 * l) - 2.0) * e * sin(m);
rc -= pow(0.5 * y, 2.0) * sin(4.0 * l);
rc -= pow(1.25 * e, 2.0) * sin(2.0 * m);
return 4.0 * degrees(rc);
}
/**
* Calculates the Sun's elevation as apparent
* from a geographical position.
*
* @param tm The time in Julian Centuries.
* @param latitude The latitude in degrees northwards from
* the equator, negative for southwards.
* @param longitude The longitude in degrees eastwards from
* Greenwich, negative for westwards.
* @return The Sun's apparent elevation at the specified time as seen
* from the specified position, measured in radians.
*/
static inline double
solar_elevation_from_time(double tm, double latitude, double longitude)
{
double rc = julian_centuries_to_julian_day(tm);
rc = (rc - round(rc) - 0.5) * 1440;
rc = 720.0 - rc - equation_of_time(tm);
rc = radians(rc / 4.0 - longitude);
return elevation_from_hour_angle(latitude, solar_declination(tm), rc);
}
/**
* Calculates the Sun's elevation as apparent
* from a geographical position.
*
* @param latitude The latitude in degrees northwards from
* the equator, negative for southwards.
* @param longitude The longitude in degrees eastwards from
* Greenwich, negative for westwards.
* @return The Sun's apparent elevation as seen, right now,
* from the specified position, measured in degrees.
*
* @throws 0 On success.
* @throws Any error specified for clock_gettime(3) on error.
*/
double
libred_solar_elevation(double latitude, double longitude)
{
double tm = julian_centuries();
return errno ? -1 : degrees(solar_elevation_from_time(tm, latitude, longitude));
}
/**
* Exit if time the is before year 0 in J2000.
*
* @return 0 on success, -1 on error.
*/
int libred_check_timetravel(void)
{
#if !defined(TIMETRAVELLER)
struct timespec now;
if (clock_gettime(CLOCK_REALTIME, &now))
return -1;
if (now.tv_sec < (time_t)946728000L) {
fprintf(stderr,
"We have detected that you are a time-traveller"
"(or your clock is not configured correctly.)"
"Please recompile libred with -DTIMETRAVELLER"
"(or correct your clock.)");
exit(1);
}
#endif
return 0;
}
|