diff options
| author | Mattias Andrée <m@maandree.se> | 2024-10-18 15:40:45 +0200 | 
|---|---|---|
| committer | Mattias Andrée <m@maandree.se> | 2024-10-18 15:40:45 +0200 | 
| commit | 5a91a0b96fe10b4971391b1d56a58ec0288f72e1 (patch) | |
| tree | 4318a80e83c5c3f27c921596a57e98e7e4454cc8 | |
| parent | Update e-mail (diff) | |
| download | libred-5a91a0b96fe10b4971391b1d56a58ec0288f72e1.tar.gz libred-5a91a0b96fe10b4971391b1d56a58ec0288f72e1.tar.bz2 libred-5a91a0b96fe10b4971391b1d56a58ec0288f72e1.tar.xz | |
cleanup
Signed-off-by: Mattias Andrée <m@maandree.se>
Diffstat (limited to '')
| -rw-r--r-- | libred.h | 4 | ||||
| -rw-r--r-- | solar.c | 188 | 
2 files changed, 96 insertions, 96 deletions
| @@ -13,12 +13,12 @@  /**   * The Sun's elevation at sunset and sunrise, measured in degrees   */ -#define LIBRED_SOLAR_ELEVATION_SUNSET_SUNRISE   (-32.0 / 60.0) +#define LIBRED_SOLAR_ELEVATION_SUNSET_SUNRISE  (-32.0 / 60.0)  /**   * The Sun's elevation at civil dusk and civil dawn, measured in degrees   */ -#define LIBRED_SOLAR_ELEVATION_CIVIL_DUSK_DAWN   (-6.0) +#define LIBRED_SOLAR_ELEVATION_CIVIL_DUSK_DAWN  (-6.0)  /**   * The Sun's elevation at nautical dusk and nautical dawn, measured in degrees @@ -41,23 +41,23 @@ julian_centuries(double *nowp)  /**   * Convert a Julian Centuries timestamp to a Julian Day timestamp   *  - * @param   tm  The time in Julian Centuries + * @param   t  The time in Julian Centuries   * @return      The time in Julian Days   */ -static inline double -julian_centuries_to_julian_day(double tm) +static double +julian_centuries_to_julian_day(double t)  { -	return tm * 36525.0 + 2451545.0; +	return 36525.0 * t + 2451545.0;  }  /**   * Convert an angle (or otherwise) from degrees to radians   *  - * @param  deg  The angle in degrees. - * @param       The angle in radians. + * @param  deg  The angle in degrees + * @param       The angle in radians   */ -static inline double +static double  radians(double deg)  {  	return deg * (double)M_PI / 180.0; @@ -66,10 +66,10 @@ radians(double deg)  /**   * Convert an angle (or otherwise) from radians to degrees   *  - * @param  rad  The angle in radians. - * @param       The angle in degrees. + * @param  rad  The angle in radians + * @param       The angle in degrees   */ -static inline double +static double  degrees(double rad)  {  	return rad * 180.0 / (double)M_PI; @@ -79,170 +79,170 @@ degrees(double rad)  /**   * Calculates the Sun's elevation from the solar hour angle   *  - * @param   longitude    The longitude in degrees eastwards - *                       from Greenwich, negative for westwards + * @param   latitude     The latitude in degrees northwards from  + *                       the equator, negative for southwards   * @param   declination  The declination, in radians   * @param   hour_angle   The solar hour angle, in radians   * @return               The Sun's elevation, in radians   */ -static inline double +static double  elevation_from_hour_angle(double latitude, double declination, double hour_angle)  { -	double rc = cos(radians(latitude)); -	rc *= cos(hour_angle) * cos(declination); -	rc += sin(radians(latitude)) * sin(declination); -	return asin(rc); +	double r = cos(radians(latitude)); +	r *= cos(hour_angle) * cos(declination); +	r += sin(radians(latitude)) * sin(declination); +	return asin(r);  }  /**   * Calculates the Sun's geometric mean longitude   *  - * @param   tm  The time in Julian Centuries - * @return      The Sun's geometric mean longitude in radians + * @param   t  The time in Julian Centuries + * @return     The Sun's geometric mean longitude in radians   */ -static inline double -sun_geometric_mean_longitude(double tm) +static double +sun_geometric_mean_longitude(double t)  { -	double rc = fmod(pow(0.0003032 * tm, 2.0) + 36000.76983 * tm + 280.46646, 360.0); +	double r = fmod(pow(0.0003032 * t, 2.0) + 36000.76983 * t + 280.46646, 360.0);  #if defined(TIMETRAVELLER) -	rc = rc < 0.0 ? (rc + 360.0) : rc; +	r = r < 0.0 ? (r + 360.0) : r;  #endif -	return radians(rc); +	return radians(r);  }  /**   * Calculates the Sun's geometric mean anomaly   *  - * @param   tm  The time in Julian Centuries - * @return      The Sun's geometric mean anomaly in radians + * @param   t  The time in Julian Centuries + * @return     The Sun's geometric mean anomaly in radians   */ -static inline double -sun_geometric_mean_anomaly(double tm) +static double +sun_geometric_mean_anomaly(double t)  { -	return radians(pow(-0.0001537 * tm, 2.0) + 35999.05029 * tm + 357.52911); +	return radians(pow(-0.0001537 * t, 2.0) + 35999.05029 * t + 357.52911);  }  /**   * Calculates the Earth's orbit eccentricity   *  - * @param   tm  The time in Julian Centuries - * @return      The Earth's orbit eccentricity + * @param   t  The time in Julian Centuries + * @return     The Earth's orbit eccentricity   */ -static inline double -earth_orbit_eccentricity(double tm) +static double +earth_orbit_eccentricity(double t)  { -	return pow(-0.0000001267 * tm, 2.0) - 0.000042037 * tm + 0.016708634; +	return pow(-0.0000001267 * t, 2.0) - 0.000042037 * t + 0.016708634;  }  /**   * Calculates the Sun's equation of the centre, the difference   * between the true anomaly and the mean anomaly   *  - * @param   tm  The time in Julian Centuries - * @return      The Sun's equation of the centre, in radians + * @param   t  The time in Julian Centuries + * @return     The Sun's equation of the centre, in radians   */ -static inline double -sun_equation_of_centre(double tm) +static double +sun_equation_of_centre(double t)  { -	double a = sun_geometric_mean_anomaly(tm), rc; -	rc  = sin(1.0 * a) * (pow(-0.000014 * tm, 2.0) - 0.004817 * tm + 1.914602); -	rc += sin(2.0 * a) * (-0.000101 * tm + 0.019993); -	rc += sin(3.0 * a) * 0.000289; -	return radians(rc); +	double a = sun_geometric_mean_anomaly(t), r; +	r  = sin(1.0 * a) * (pow(-0.000014 * t, 2.0) - 0.004817 * t + 1.914602); +	r += sin(2.0 * a) * (-0.000101 * t + 0.019993); +	r += sin(3.0 * a) * 0.000289; +	return radians(r);  }  /**   * Calculates the Sun's real longitudinal position   *  - * @param   tm  The time in Julian Centuries - * @return      The longitude, in radians + * @param   t  The time in Julian Centuries + * @return     The longitude, in radians   */ -static inline double -sun_real_longitude(double tm) +static double +sun_real_longitude(double t)  { -	return sun_geometric_mean_longitude(tm) + sun_equation_of_centre(tm); +	return sun_geometric_mean_longitude(t) + sun_equation_of_centre(t);  }  /**   * Calculates the Sun's apparent longitudinal position   *  - * @param   tm  The time in Julian Centuries - * @return      The longitude, in radians + * @param   t  The time in Julian Centuries + * @return     The longitude, in radians   */ -static inline double -sun_apparent_longitude(double tm) +static double +sun_apparent_longitude(double t)  { -	double rc = degrees(sun_real_longitude(tm)) - 0.00569; -	return radians(rc - 0.00478 * sin(radians(-1934.136 * tm + 125.04))); +	double r = degrees(sun_real_longitude(t)) - 0.00569; +	return radians(r - 0.00478 * sin(radians(-1934.136 * t + 125.04)));  }  /**   * Calculates the mean ecliptic obliquity of the Sun's   * apparent motion without variation correction   *  - * @param   tm  The time in Julian Centuries - * @return      The uncorrected mean obliquity, in radians + * @param   t  The time in Julian Centuries + * @return     The uncorrected mean obliquity, in radians   */  static double -mean_ecliptic_obliquity(double tm) +mean_ecliptic_obliquity(double t)  { -	double rc = pow(0.001813 * tm, 3.0) - pow(0.00059 * tm, 2.0) - 46.815 * tm + 21.448; -	return radians(23.0 + (26.0 + rc / 60.0) / 60.0); +	double r = pow(0.001813 * t, 3.0) - pow(0.00059 * t, 2.0) - 46.815 * t + 21.448; +	return radians(23.0 + (26.0 + r / 60.0) / 60.0);  }  /**   * Calculates the mean ecliptic obliquity of the Sun's   * parent motion with variation correction   *  - * @param   tm  The time in Julian Centuries - * @return      The mean obliquity, in radians + * @param   t  The time in Julian Centuries + * @return     The mean obliquity, in radians   */  static double -corrected_mean_ecliptic_obliquity(double tm) +corrected_mean_ecliptic_obliquity(double t)  { -	double rc = 0.00256 * cos(radians(-1934.136 * tm + 125.04)); -	return radians(rc + degrees(mean_ecliptic_obliquity(tm))); +	double r = 0.00256 * cos(radians(-1934.136 * t + 125.04)); +	return radians(r + degrees(mean_ecliptic_obliquity(t)));  }  /**   * Calculates the Sun's declination   *  - * @param   tm  The time in Julian Centuries - * @return      The Sun's declination, in radian + * @param   t  The time in Julian Centuries + * @return     The Sun's declination, in radian   */ -static inline double -solar_declination(double tm) +static double +solar_declination(double t)  { -	double rc = sin(corrected_mean_ecliptic_obliquity(tm)); -	return asin(rc * sin(sun_apparent_longitude(tm))); +	double r = sin(corrected_mean_ecliptic_obliquity(t)); +	return asin(r * sin(sun_apparent_longitude(t)));  }  /**   * Calculates the equation of time, the discrepancy   * between apparent and mean solar time   *  - * @param   tm  The time in Julian Centuries - * @return      The equation of time, in degrees + * @param   t  The time in Julian Centuries + * @return     The equation of time, in degrees   */ -static inline double -equation_of_time(double tm) +static double +equation_of_time(double t)  { -	double l = sun_geometric_mean_longitude(tm); -	double e = earth_orbit_eccentricity(tm); -	double m = sun_geometric_mean_anomaly(tm); -	double y = pow(tan(corrected_mean_ecliptic_obliquity(tm) / 2.0), 2.0); -	double rc = y * sin(2.0 * l); -	rc += (4.0 * y * cos(2.0 * l) - 2.0) * e * sin(m); -	rc -= pow(0.5 * y, 2.0) * sin(4.0 * l); -	rc -= pow(1.25 * e, 2.0) * sin(2.0 * m); -	return 4.0 * degrees(rc); +	double l = sun_geometric_mean_longitude(t); +	double e = earth_orbit_eccentricity(t); +	double m = sun_geometric_mean_anomaly(t); +	double y = pow(tan(corrected_mean_ecliptic_obliquity(t) / 2.0), 2.0); +	double r = y * sin(2.0 * l); +	r += (4.0 * y * cos(2.0 * l) - 2.0) * e * sin(m); +	r -= pow(0.5 * y, 2.0) * sin(4.0 * l); +	r -= pow(1.25 * e, 2.0) * sin(2.0 * m); +	return 4.0 * degrees(r);  }  /**   * Calculates the Sun's elevation as apparent   * from a geographical position   *  - * @param   tm         The time in Julian Centuries + * @param   t          The time in Julian Centuries   * @param   latitude   The latitude in degrees northwards from    *                     the equator, negative for southwards   * @param   longitude  The longitude in degrees eastwards from @@ -250,14 +250,14 @@ equation_of_time(double tm)   * @return             The Sun's apparent elevation at the specified time as seen   *                     from the specified position, measured in radians   */ -static inline double -solar_elevation_from_time(double tm, double latitude, double longitude) +static double +solar_elevation_from_time(double t, double latitude, double longitude)  { -	double rc = julian_centuries_to_julian_day(tm); -	rc = (rc - round(rc) - 0.5) * 1440; -	rc = 720.0 - rc - equation_of_time(tm); -	rc = radians(rc / 4.0 - longitude); -	return elevation_from_hour_angle(latitude, solar_declination(tm), rc); +	double a = julian_centuries_to_julian_day(t); +	a = (a - round(a) - 0.5) * 1440; +	a = 720.0 - a - equation_of_time(t); +	a = radians(a / 4.0 - longitude); +	return elevation_from_hour_angle(latitude, solar_declination(t), a);  }  /** @@ -277,10 +277,10 @@ solar_elevation_from_time(double tm, double latitude, double longitude)  double  libred_solar_elevation(double latitude, double longitude, double *elevation)  { -	double tm; -	if (julian_centuries(&tm)) +	double t; +	if (julian_centuries(&t))  		return -1; -	*elevation = degrees(solar_elevation_from_time(tm, latitude, longitude)); +	*elevation = degrees(solar_elevation_from_time(t, latitude, longitude));  	return 0;  } | 
