/**
* libgamma -- Display server abstraction layer for gamma ramp adjustments
* Copyright (C) 2014 Mattias Andrée (maandree@member.fsf.org)
*
* This library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this library. If not, see .
*/
#include "gamma-helper.h"
#include "libgamma-method.h"
#include "libgamma-error.h"
#include
#include
#include
/**
* Just an arbitrary version.
*/
#define ANY bits64
/**
* Concatenation of all ramps.
*/
#define ALL red
/**
* Preform installation in an `for (i = 0; i < n; i++)`
* loop and do a `break` afterwords.
*/
#define __translate(instruction) for (i = 0; i < n; i++) instruction; break
/**
* Convert a [0, 1] `float` to a full range `uint64_t`
* and mark sure rounding errors does not cause the
* value be 0 instead of ~0 and vice versa.
*
* @param value To `float` to convert.
* @return The value as an `uint64_t`.
*/
static inline uint64_t float_to_64(float value)
{
/* XXX Which is faster? */
#if defined(HAVE_INT128) && __WORDSIZE == 64
/* `__int128` is a GNU C extension, which
(because it is not ISO C) emits a warning
under -pedantic. */
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wpedantic"
/* In GCC we can use `__int128`, this is
a signed 128-bit integer. It fits all
uint64_t values but also native values,
which is a nice because it eleminates
some overflow condition tests. It is
also more readable. */
/* Convert to integer. */
__int128 product = (__int128)(value * (float)UINT64_MAX);
/* Negative overflow. */
if (product > UINT64_MAX)
return UINT64_MAX;
/* Positive overflow. */
if (product < 0)
return 0;
/* Did not overflow. */
return (uint64_t)product;
# pragma GCC diagnostic pop
#else
/* If we are not using GCC we cannot be
sure that we have `__int128` so we have
to use `uint64_t` and perform overflow
checkes based on the input value. */
/* Convert to integer. */
uint64_t product = (uint64_t)(value * (float)UINT64_MAX);
/* Negative overflow,
if the input is less than 0,5 but
the output is greater then we got
-1 when we should have gotten 0. */
if ((value < 0.1f) && (product > 0xF000000000000000ULL))
return 0;
/* Positive overflow,
if the input is greater than 0,5
but the output is less then we got
0 when we should have gotten ~0. */
else if ((value > 0.9f) && (product < 0x1000000000000000ULL))
return (uint64_t)~0;
/* Did not overflow. */
return product;
#endif
}
/**
* Convert a [0, 1] `double` to a full range `uint64_t`
* and mark sure rounding errors does not cause the
* value be 0 instead of ~0 and vice versa.
*
* @param value To `double` to convert.
* @return The value as an `uint64_t`.
*/
static inline uint64_t double_to_64(double value)
{
/* XXX Which is faster? */
#if defined(HAVE_INT128) && __WORDSIZE == 64
/* `__int128` is a GNU C extension, which
(because it is not ISO C) emits a warning
under -pedantic. */
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wpedantic"
/* In GCC we can use `__int128`, this is
a signed 128-bit integer. It fits all
uint64_t values but also native values,
which is a nice because it eleminates
some overflow condition tests. It is
also more readable. */
/* Convert to integer. */
__int128 product = (__int128)(value * (double)UINT64_MAX);
/* Negative overflow. */
if (product > UINT64_MAX)
return UINT64_MAX;
/* Positive overflow. */
if (product < 0)
return 0;
/* Did not overflow. */
return (uint64_t)product;
# pragma GCC diagnostic pop
#else
/* If we are not using GCC we cannot be
sure that we have `__int128` so we have
to use `uint64_t` and perform overflow
checkes based on the input value. */
/* Convert to integer. */
uint64_t product = (uint64_t)(value * (double)UINT64_MAX);
/* Negative overflow,
if the input is less than 0,5 but
the output is greater then we got
-1 when we should have gotten 0. */
if ((value < (double)0.1f) && (product > 0xF000000000000000ULL))
product = 0;
/* Positive overflow.
if the input is greater than 0,5
but the output is less then we got
0 when we should have gotten ~0. */
else if ((value > (double)0.9f) && (product < 0x1000000000000000ULL))
product = (uint64_t)~0;
/* Did not overflow. */
return product;
#endif
}
/**
* Convert any set of gamma ramps into a 64-bit integer array with all channels.
*
* @param depth The depth of the gamma ramp, `-1` for `float`, `-2` for `double`.
* @param n The grand size of gamma ramps (sum of all channels' sizes.)
* @param out Output array.
* @param in Input gamma ramps.
*/
static void translate_to_64(signed depth, size_t n, uint64_t* restrict out, libgamma_gamma_ramps_any_t in)
{
size_t i;
switch (depth)
{
/* Translate integer. */
case 8: __translate(out[i] = (uint64_t)(in.bits8. ALL[i]) * 0x0101010101010101ULL);
case 16: __translate(out[i] = (uint64_t)(in.bits16.ALL[i]) * 0x0001000100010001ULL);
case 32: __translate(out[i] = (uint64_t)(in.bits32.ALL[i]) * 0x0000000100000001ULL);
/* Identity translation. */
case 64: __translate(out[i] = in.bits64.ALL[i]);
/* Translate floating point. */
case -1: __translate(out[i] = float_to_64(in.float_single.ALL[i]));
case -2: __translate(out[i] = double_to_64(in.float_double.ALL[i]));
default:
/* This is not possible. */
abort();
break;
}
}
/**
* Undo the actions of `translate_to_64`.
*
* @param depth The depth of the gamma ramp, `-1` for `float`, `-2` for `double`.
* @param n The grand size of gamma ramps (sum of all channels' sizes.)
* @param out Output gamma ramps.
* @param in Input array, may be modified.
*/
static void translate_from_64(signed depth, size_t n, libgamma_gamma_ramps_any_t out, uint64_t* restrict in)
{
size_t i;
switch (depth)
{
/* Translate integer. */
case 8: __translate(out.bits8. ALL[i] = (uint8_t)(in[i] / 0x0101010101010101ULL));
case 16: __translate(out.bits16.ALL[i] = (uint16_t)(in[i] / 0x0001000100010001ULL));
case 32: __translate(out.bits32.ALL[i] = (uint32_t)(in[i] / 0x0000000100000001ULL));
/* Identity translation. */
case 64: __translate(out.bits64.ALL[i] = in[i]);
/* Translate floating point. */
case -1: __translate(out.float_single.ALL[i] = (float)(in[i]) / (float)UINT64_MAX);
case -2: __translate(out.float_double.ALL[i] = (double)(in[i]) / (double)UINT64_MAX);
default:
/* This is not possible. */
abort();
break;
}
}
/**
* Allocate and initalise a gamma ramp with any depth.
*
* @param ramps_sys Output gamma ramps.
* @param ramps The gamma ramps whose sizes should be duplicated.
* @param depth The depth of the gamma ramps to allocate,
* `-1` for `float`, `-2` for `double`.
* @param elements Output reference for the grand size of the gamma ramps.
* @return Zero on success, otherwise (negative) the value of an
* error identifier provided by this library.
*/
static int allocated_any_ramp(libgamma_gamma_ramps_any_t* restrict ramps_sys,
libgamma_gamma_ramps_any_t ramps, signed depth, size_t* restrict elements)
{
/* Calculate the size of the allocation to do. */
size_t d, n = ramps.ANY.red_size + ramps.ANY.green_size + ramps.ANY.blue_size;
switch (depth)
{
case 8: d = sizeof(uint8_t); break;
case 16: d = sizeof(uint16_t); break;
case 32: d = sizeof(uint32_t); break;
case 64: d = sizeof(uint64_t); break;
case -1: d = sizeof(float); break;
case -2: d = sizeof(double); break;
default:
return errno = EINVAL, LIBGAMMA_ERRNO_SET;
}
/* Copy the gamma ramp sizes. */
ramps_sys->ANY = ramps.ANY;
/* Allocate the new ramps. */
#ifdef HAVE_LIBGAMMA_METHOD_LINUX_DRM
/* Valgrind complains about us reading uninitialize memory if we just use malloc. */
ramps_sys->ANY.red = calloc(n, d);
#else
ramps_sys->ANY.red = malloc(n * d);
#endif
ramps_sys->ANY.green = (void*)(((char*)(ramps_sys->ANY. red)) + ramps.ANY. red_size * d / sizeof(char));
ramps_sys->ANY.blue = (void*)(((char*)(ramps_sys->ANY.green)) + ramps.ANY.green_size * d / sizeof(char));
/* Report the total gamma ramp size. */
*elements = n;
/* Report successfulness. */
return ramps_sys->ANY.red == NULL ? LIBGAMMA_ERRNO_SET : 0;
}
/**
* Get the current gamma ramps for a CRTC, re-encoding version.
*
* @param this The CRTC state.
* @param ramps The gamma ramps to fill with the current values.
* @param depth_user The depth of the gamma ramps that are provided by the user,
* `-1` for `float`, `-2` for `double`.
* @param depth_system The depth of the gamma ramps as required by the adjustment method,
* `-1` for `float`, `-2` for `double`.
* @param fun Function that is to be used read the ramps, its parameters have
* the same function as those of this function with the same names,
* and the return value too is identical.
* @return Zero on success, otherwise (negative) the value of an
* error identifier provided by this library.
*/
int libgamma_translated_ramp_get_(libgamma_crtc_state_t* restrict this,
libgamma_gamma_ramps_any_t* restrict ramps,
signed depth_user, signed depth_system,
libgamma_get_ramps_any_fun* fun)
{
size_t n;
int r;
libgamma_gamma_ramps_any_t ramps_sys;
uint64_t* restrict ramps_full;
/* Allocate ramps with proper data type. */
if ((r = allocated_any_ramp(&ramps_sys, *ramps, depth_system, &n)))
return r;
/* Fill the ramps. */
if ((r = fun(this, &ramps_sys)))
return free(ramps_sys.ANY.red), r;
/* Allocate intermediary ramps. */
if ((ramps_full = malloc(n * sizeof(uint64_t))) == NULL)
return free(ramps_sys.ANY.red), LIBGAMMA_ERRNO_SET;
/* Translate ramps to 64-bit integers. */
translate_to_64(depth_system, n, ramps_full, ramps_sys);
free(ramps_sys.ANY.red);
/* Translate ramps to the user's format. */
translate_from_64(depth_user, n, *ramps, ramps_full);
free(ramps_full);
return 0;
}
/**
* Set the gamma ramps for a CRTC, re-encoding version.
*
* @param this The CRTC state.
* @param ramps The gamma ramps to apply.
* @param depth_user The depth of the gamma ramps that are provided by the user,
* `-1` for `float`, `-2` for `double`.
* @param depth_system The depth of the gamma ramps as required by the adjustment method,
* `-1` for `float`, `-2` for `double`.
* @param fun Function that is to be used write the ramps, its parameters have
* the same function as those of this function with the same names,
* and the return value too is identical.
* @return Zero on success, otherwise (negative) the value of an
* error identifier provided by this library.
*/
int libgamma_translated_ramp_set_(libgamma_crtc_state_t* restrict this,
libgamma_gamma_ramps_any_t ramps,
signed depth_user, signed depth_system,
libgamma_set_ramps_any_fun* fun)
{
size_t n;
int r;
libgamma_gamma_ramps_any_t ramps_sys;
uint64_t* restrict ramps_full;
/* Allocate ramps with proper data type. */
if ((r = allocated_any_ramp(&ramps_sys, ramps, depth_system, &n)))
return r;
/* Allocate intermediary ramps. */
if ((ramps_full = malloc(n * sizeof(uint64_t))) == NULL)
return free(ramps_sys.ANY.red), LIBGAMMA_ERRNO_SET;
/* Translate ramps to 64-bit integers. */
translate_to_64(depth_user, n, ramps_full, ramps);
/* Translate ramps to the proper format. */
translate_from_64(depth_system, n, ramps_sys, ramps_full);
free(ramps_full);
/* Apply the ramps */
r = fun(this, ramps_sys);
free(ramps_sys.ANY.red);
return r;
}
#undef __translate
#undef ALL
#undef ANY