/** * libgamma -- Display server abstraction layer for gamma ramp adjustments * Copyright (C) 2014 Mattias Andrée (maandree@member.fsf.org) * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this library. If not, see . */ #include "gamma-helper.h" #include "libgamma-method.h" #include "libgamma-error.h" #include #include #include /** * Just an arbitrary version. */ #define ANY bits64 /** * Concatenation of all ramps. */ #define ALL red /** * Preform installation in an `for (i = 0; i < n; i++)` * loop and do a `break` afterwords. */ #define __translate(instruction) for (i = 0; i < n; i++) instruction; break /** * Convert a [0, 1] `float` to a full range `uint64_t` * and mark sure rounding errors does not cause the * value be 0 instead of ~0 and vice versa. * * @param value To `float` to convert. * @return The value as an `uint64_t`. */ static inline uint64_t float_to_64(float value) { /* XXX Which is faster? */ #ifdef HAVE_INT128 /* `__int128` is a GNU C extension, which (because it is not ISO C) emits a warning under -pedantic. */ # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wpedantic" /* In GCC we can use `__int128`, this is a signed 128-bit integer. It fits all uint64_t values but also native values, which is a nice because it eleminates some overflow condition tests. It is also more readable. */ /* Convert to integer. */ __int128 product = (__int128)(value * (float)UINT64_MAX); /* Negative overflow. */ if (product > UINT64_MAX) return UINT64_MAX; /* Positive overflow. */ if (product < 0) return 0; /* Did not overflow. */ return (uint64_t)product; # pragma GCC diagnostic pop #else /* If we are not using GCC we cannot be sure that we have `__int128` so we have to use `uint64_t` and perform overflow checkes based on the input value. */ /* Convert to integer. */ uint64_t product = (uint64_t)(value * (float)UINT64_MAX); /* Negative overflow, if the input is less than 0,5 but the output is greater then we got -1 when we should have gotten 0. */ if ((value < 0.1f) && (product > 0xF000000000000000ULL)) return 0; /* Positive overflow, if the input is greater than 0,5 but the output is less then we got 0 when we should have gotten ~0. */ else if ((value > 0.9f) && (product < 0x1000000000000000ULL)) return (uint64_t)~0; /* Did not overflow. */ return product; #endif } /** * Convert a [0, 1] `double` to a full range `uint64_t` * and mark sure rounding errors does not cause the * value be 0 instead of ~0 and vice versa. * * @param value To `double` to convert. * @return The value as an `uint64_t`. */ static inline uint64_t double_to_64(double value) { /* XXX Which is faster? */ #ifdef HAVE_INT128 /* `__int128` is a GNU C extension, which (because it is not ISO C) emits a warning under -pedantic. */ # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wpedantic" /* In GCC we can use `__int128`, this is a signed 128-bit integer. It fits all uint64_t values but also native values, which is a nice because it eleminates some overflow condition tests. It is also more readable. */ /* Convert to integer. */ __int128 product = (__int128)(value * (double)UINT64_MAX); /* Negative overflow. */ if (product > UINT64_MAX) return UINT64_MAX; /* Positive overflow. */ if (product < 0) return 0; /* Did not overflow. */ return (uint64_t)product; # pragma GCC diagnostic pop #else /* If we are not using GCC we cannot be sure that we have `__int128` so we have to use `uint64_t` and perform overflow checkes based on the input value. */ /* Convert to integer. */ uint64_t product = (uint64_t)(value * (double)UINT64_MAX); /* Negative overflow, if the input is less than 0,5 but the output is greater then we got -1 when we should have gotten 0. */ if ((value < (double)0.1f) && (product > 0xF000000000000000ULL)) product = 0; /* Positive overflow. if the input is greater than 0,5 but the output is less then we got 0 when we should have gotten ~0. */ else if ((value > (double)0.9f) && (product < 0x1000000000000000ULL)) product = (uint64_t)~0; /* Did not overflow. */ return product; #endif } /** * Convert any set of gamma ramps into a 64-bit integer array with all channels. * * @param depth The depth of the gamma ramp, `-1` for `float`, `-2` for `double`. * @param n The grand size of gamma ramps (sum of all channels' sizes.) * @param out Output array. * @param in Input gamma ramps. */ static void translate_to_64(signed depth, size_t n, uint64_t* restrict out, libgamma_gamma_ramps_any_t in) { size_t i; switch (depth) { /* Translate integer. */ case 16: __translate(out[i] = (uint64_t)(in.bits16.ALL[i]) * 0x0001000100010001ULL); case 32: __translate(out[i] = (uint64_t)(in.bits32.ALL[i]) * 0x0000000100000001ULL); /* Identity translation. */ case 64: __translate(out[i] = in.bits64.ALL[i]); /* Translate floating point. */ case -1: __translate(out[i] = float_to_64(in.float_single.ALL[i])); case -2: __translate(out[i] = double_to_64(in.float_double.ALL[i])); default: /* This is not possible. */ abort(); break; } } /** * Undo the actions of `translate_to_64`. * * @param depth The depth of the gamma ramp, `-1` for `float`, `-2` for `double`. * @param n The grand size of gamma ramps (sum of all channels' sizes.) * @param out Output gamma ramps. * @param in Input array, may be modified. */ static void translate_from_64(signed depth, size_t n, libgamma_gamma_ramps_any_t out, uint64_t* restrict in) { size_t i; switch (depth) { /* Translate integer. */ case 16: __translate(out.bits16.ALL[i] = (uint16_t)(in[i] / 0x0001000100010001ULL)); case 32: __translate(out.bits32.ALL[i] = (uint32_t)(in[i] / 0x0000000100000001ULL)); /* Identity translation. */ case 64: __translate(out.bits64.ALL[i] = in[i]); /* Translate floating point. */ case -1: __translate(out.float_single.ALL[i] = (float)(in[i]) / (float)UINT64_MAX); case -2: __translate(out.float_double.ALL[i] = (double)(in[i]) / (double)UINT64_MAX); default: /* This is not possible. */ abort(); break; } } /** * Allocate and initalise a gamma ramp with any depth. * * @param ramps_sys Output gamma ramps. * @param ramps The gamma ramps whose sizes should be duplicated. * @param depth The depth of the gamma ramps to allocate, * `-1` for `float`, `-2` for `double`. * @param elements Output reference for the grand size of the gamma ramps. * @return Zero on success, otherwise (negative) the value of an * error identifier provided by this library. */ static int allocated_any_ramp(libgamma_gamma_ramps_any_t* restrict ramps_sys, libgamma_gamma_ramps_any_t ramps, signed depth, size_t* restrict elements) { /* Calculate the size of the allocation to do. */ size_t d, n = ramps.ANY.red_size + ramps.ANY.green_size + ramps.ANY.blue_size; switch (depth) { case 16: d = sizeof(uint16_t); break; case 32: d = sizeof(uint32_t); break; case 64: d = sizeof(uint64_t); break; case -1: d = sizeof(float); break; case -2: d = sizeof(double); break; default: return errno = EINVAL, LIBGAMMA_ERRNO_SET; } /* Copy the gamma ramp sizes. */ ramps_sys->ANY = ramps.ANY; /* Allocate the new ramps. */ #ifdef HAVE_LIBGAMMA_METHOD_LINUX_DRM /* Valgrind complains about us reading uninitialize memory if we just use malloc. */ ramps_sys->ANY.red = calloc(n, d); #else ramps_sys->ANY.red = malloc(n * d); #endif ramps_sys->ANY.green = (void*)(((char*)(ramps_sys->ANY. red)) + ramps.ANY. red_size * d / sizeof(char)); ramps_sys->ANY.blue = (void*)(((char*)(ramps_sys->ANY.green)) + ramps.ANY.green_size * d / sizeof(char)); /* Report the total gamma ramp size. */ *elements = n; /* Report successfulness. */ return ramps_sys->ANY.red == NULL ? LIBGAMMA_ERRNO_SET : 0; } /** * Get current the gamma ramps for a CRTC, re-encoding version. * * @param this The CRTC state. * @param ramps The gamma ramps to fill with the current values. * @param depth_user The depth of the gamma ramps that are provided by the user, * `-1` for `float`, `-2` for `double`. * @param depth_system The depth of the gamma ramps as required by the adjustment method, * `-1` for `float`, `-2` for `double`. * @param fun Function that is to be used read the ramps, its parameters have * the same function as those of this function with the same names, * and the return value too is identical. * @return Zero on success, otherwise (negative) the value of an * error identifier provided by this library. */ int libgamma_translated_ramp_get_(libgamma_crtc_state_t* restrict this, libgamma_gamma_ramps_any_t* restrict ramps, signed depth_user, signed depth_system, libgamma_get_ramps_any_fun* fun) { size_t n; int r; libgamma_gamma_ramps_any_t ramps_sys; uint64_t* restrict ramps_full; /* Allocate ramps with proper data type. */ if ((r = allocated_any_ramp(&ramps_sys, *ramps, depth_system, &n))) return r; /* Fill the ramps. */ if ((r = fun(this, &ramps_sys))) return free(ramps_sys.ANY.red), r; /* Allocate intermediary ramps. */ if ((ramps_full = malloc(n * sizeof(uint64_t))) == NULL) return free(ramps_sys.ANY.red), LIBGAMMA_ERRNO_SET; /* Translate ramps to 64-bit integers. */ translate_to_64(depth_system, n, ramps_full, ramps_sys); free(ramps_sys.ANY.red); /* Translate ramps to the user's format. */ translate_from_64(depth_user, n, *ramps, ramps_full); free(ramps_full); return 0; } /** * Set the gamma ramps for a CRTC, re-encoding version. * * @param this The CRTC state. * @param ramps The gamma ramps to apply. * @param depth_user The depth of the gamma ramps that are provided by the user, * `-1` for `float`, `-2` for `double`. * @param depth_system The depth of the gamma ramps as required by the adjustment method, * `-1` for `float`, `-2` for `double`. * @param fun Function that is to be used write the ramps, its parameters have * the same function as those of this function with the same names, * and the return value too is identical. * @return Zero on success, otherwise (negative) the value of an * error identifier provided by this library. */ int libgamma_translated_ramp_set_(libgamma_crtc_state_t* restrict this, libgamma_gamma_ramps_any_t ramps, signed depth_user, signed depth_system, libgamma_set_ramps_any_fun* fun) { size_t n; int r; libgamma_gamma_ramps_any_t ramps_sys; uint64_t* restrict ramps_full; /* Allocate ramps with proper data type. */ if ((r = allocated_any_ramp(&ramps_sys, ramps, depth_system, &n))) return r; /* Allocate intermediary ramps. */ if ((ramps_full = malloc(n * sizeof(uint64_t))) == NULL) return free(ramps_sys.ANY.red), LIBGAMMA_ERRNO_SET; /* Translate ramps to 64-bit integers. */ translate_to_64(depth_user, n, ramps_full, ramps); /* Translate ramps to the proper format. */ translate_from_64(depth_system, n, ramps_sys, ramps_full); free(ramps_full); /* Apply the ramps */ r = fun(this, ramps_sys); free(ramps_sys.ANY.red); return r; } #undef __translate #undef ALL #undef ANY