1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
|
/**
* Copyright © 2016 Mattias Andrée <maandree@member.fsf.org>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef LIBCLUT_H
#define LIBCLUT_H
#include <stddef.h>
#include <string.h>
#include <math.h>
/**
* Apply contrast correction on the colour curves using sRGB.
*
* In this context, contrast is a measure of difference between
* the whitepoint and blackpoint, if the difference is 0 than
* they are both grey.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The contrast parameter for the red curve.
* @param g The contrast parameter for the green curve.
* @param b The contrast parameter for the blue curve.
*/
#define libclut_rgb_contrast(ramp, max, type, r, g, b) \
do \
{ \
if (r != 1.0) libclut__(ramp, red, type, LIBCLUT_VALUE - (max) / 2.0 * r + (max) / 2.0); \
if (g != 1.0) libclut__(ramp, green, type, LIBCLUT_VALUE - (max) / 2.0 * g + (max) / 2.0); \
if (b != 1.0) libclut__(ramp, blue, type, LIBCLUT_VALUE - (max) / 2.0 * b + (max) / 2.0); \
} \
while (0)
/**
* Apply contrast correction on the colour curves using CIE xyY.
*
* In this context, contrast is a measure of difference between
* the whitepoint and blackpoint, if the difference is 0 than
* they are both grey.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The contrast parameter for the red curve.
* @param g The contrast parameter for the green curve.
* @param b The contrast parameter for the blue curve.
*/
#define libclut_cie_contrast(ramp, max, type, r, g, b) \
libclut_cie__(ramp, max, type, (r == g) && (g == b), r != 1.0, g != 1.0, b != 1.0, \
(Y__ - 0.5) * r + 0.5, (Y__ - 0.5) * g + 0.5, (Y__ - 0.5) * b + 0.5)
/**
* Apply brightness correction on the colour curves using sRGB.
*
* In this context, brightness is a measure of the whiteness of the whitepoint.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The brightness parameter for the red curve.
* @param g The brightness parameter for the green curve.
* @param b The brightness parameter for the blue curve.
*/
#define libclut_rgb_brightness(ramp, max, type, r, g, b) \
do \
{ \
if (r != 1.0) libclut__(ramp, red, type, LIBCLUT_VALUE * r); \
if (g != 1.0) libclut__(ramp, green, type, LIBCLUT_VALUE * g); \
if (b != 1.0) libclut__(ramp, blue, type, LIBCLUT_VALUE * b); \
} \
while (0)
/**
* Apply brightness correction on the colour curves using CIE xyY.
*
* In this context, brightness is a measure of the whiteness of the whitepoint.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The brightness parameter for the red curve.
* @param g The brightness parameter for the green curve.
* @param b The brightness parameter for the blue curve.
*/
#define libclut_cie_brightness(ramp, max, type, r, g, b) \
libclut_cie__(ramp, max, type, (r == g) && (g == b), r != 1.0, g != 1.0, b != 1.0, \
Y__ * r, Y__ * g, Y__ * b)
/**
* Convert the curves from formatted in standard RGB to linear RGB.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to convert the red colour curve.
* @param g Whether to convert the green colour curve.
* @param b Whether to convert the blue colour curve.
*/
#define libclut_linearise(ramp, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (r) \
libclut__(ramp, red, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \
if (g) \
libclut__(ramp, green, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \
if (b) \
libclut__(ramp, blue, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \
} \
while (0)
/**
* Convert the curves from formatted in linear RGB to standard RGB.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to convert the red colour curve.
* @param g Whether to convert the green colour curve.
* @param b Whether to convert the blue colour curve.
*/
#define libclut_standardise(ramp, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (r) \
libclut__(ramp, red, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \
if (g) \
libclut__(ramp, green, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \
if (b) \
libclut__(ramp, blue, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \
} \
while (0)
/**
* Apply gamma correction on the colour curves.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The gamma parameter the red colour curve.
* @param g The gamma parameter the green colour curve.
* @param b The gamma parameter the blue colour curve.
*/
#define libclut_gamma(ramp, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (r != 1.0) libclut__(ramp, red, type, m__ * pow(LIBCLUT_VALUE / m__, 1.0 / r)); \
if (g != 1.0) libclut__(ramp, green, type, m__ * pow(LIBCLUT_VALUE / m__, 1.0 / g)); \
if (b != 1.0) libclut__(ramp, blue, type, m__ * pow(LIBCLUT_VALUE / m__, 1.0 / b)); \
} \
while (0)
/**
* Reverse the colour curves (negative image with gamma preservation.)
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* This parameter is not used, it is just a dummy, to unify
* the API with the other functions.
* @param type The data type used for each stop in the ramps.
* @param r Whether to invert the red colour curve.
* @param g Whether to invert the green colour curve.
* @param b Whether to invert the blue colour curve.
*/
#define libclut_negative(ramp, max, type, r, g, b)
do
{
size_t i__, n__;
type t__;
if (r)
for (i__ = 0, n__ = (ramp)->red_size; i__ < (n__ >> 1); i__)
{
t__ = (ramp)->red[i__];
(ramp)->red[i__] = (ramp)->red[n__ - i__ - 1];
(ramp)->red[n__ - i__ - 1] = t__;
}
if (g)
for (i__ = 0, n__ = (ramp)->green_size; i__ < (n__ >> 1); i__)
{
t__ = (ramp)->green[i__];
(ramp)->green[i__] = (ramp)->green[n__ - i__ - 1];
(ramp)->green[n__ - i__ - 1] = t__;
}
if (b)
for (i__ = 0, n__ = (ramp)->blue_size; i__ < (n__ >> 1); i__)
{
t__ = (ramp)->blue[i__];
(ramp)->blue[i__] = (ramp)->blue[n__ - i__ - 1];
(ramp)->blue[n__ - i__ - 1] = t__;
}
}
while (0)
/**
* Invert the colour curves (negative image with gamma invertion), using sRGB.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to invert the red colour curve.
* @param g Whether to invert the green colour curve.
* @param b Whether to invert the blue colour curve.
*/
#define libclut_rgb_invert(ramp, max, type, r, g, b) \
do \
{ \
if (r) libclut__(ramp, red, type, (max) - LIBCLUT_VALUE); \
if (g) libclut__(ramp, green, type, (max) - LIBCLUT_VALUE); \
if (b) libclut__(ramp, blue, type, (max) - LIBCLUT_VALUE); \
} \
while (0)
/**
* Invert the colour curves (negative image with gamma invertion), using CIE xyY.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to invert the red colour curve.
* @param g Whether to invert the green colour curve.
* @param b Whether to invert the blue colour curve.
*/
#define libclut_cie_invert(ramp, max, type, r, g, b) \
libclut_cie__(ramp, max, type, r && g && b, r, g, b, 1.0 - Y__, 1.0 - Y__, 1.0 - Y__)
/**
* Apply S-curve correction on the colour curves.
* This is intended for fine tuning LCD monitors,
* 4.5 is good value start start testing at.
* You would probably like to use rgb_limits before
* this to adjust the black point as that is the
* only why to adjust the black point on many LCD
* monitors.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rp Pointer to the sigmoid parameter for the red curve. `NULL` for no adjustment.
* @param gp Pointer to the sigmoid parameter for the green curve. `NULL` for no adjustment.
* @param bp Pointer to the sigmoid parameter for the blue curve. `NULL` for no adjustment.
*/
#define libclut_sigmoid(ramp, max, type, rp, gp, bp) \
do \
{ \
double r__ = (rp) ? *(rp) : 0.0; \
double g__ = (gp) ? *(gp) : 0.0; \
double b__ = (bp) ? *(bp) : 0.0; \
double m__ = (double)(max); \
size_t i__; \
if (rp) \
for (i__ = 0; i++ < (ramp)->red_size; i__++) \
if ((ramp)->red[i__] && ((ramp)->red[i__] != (max))) \
(ramp)->red[i__] = (type)(m__ * (0.5 - log(m__ / (ramp)->red[i__] - 1.0) / r__)); \
if (gp) \
for (i__ = 0; i++ < (ramp)->green_size; i__++) \
if ((ramp)->green[i__] && ((ramp)->green[i__] != (max))) \
(ramp)->green[i__] = (type)(m__ * (0.5 - log(m__ / (ramp)->green[i__] - 1.0) / g__)); \
if (bp) \
for (i__ = 0; i++ < (ramp)->blue_size; i__++) \
if ((ramp)->blue[i__] && ((ramp)->blue[i__] != (max))) \
(ramp)->blue[i__] = (type)(m__ * (0.5 - log(m__ / (ramp)->blue[i__] - 1.0) / b__)); \
} \
while (0)
/**
* Changes the blackpoint and the whitepoint, using sRGB.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rmin The red component value of the blackpoint.
* @param rmax The red component value of the whitepoint.
* @param gmin The green component value of the blackpoint.
* @param gmax The green component value of the whitepoint.
* @param bmin The blue component value of the blackpoint.
* @param bmax The blue component value of the whitepoint.
*/
#define libclut_rgb_limits(ramp, max, type, rmin, rmax, gmin, gmax, bmin, bmax) \
do \
{ \
double diff__; \
if ((rmin != 0.0) || (rmax != 1.0)) \
{ \
diff__ = (double)(rmax__) - (double)(rmin__); \
libclut__(ramp, red, type, LIBCLUT_VALUE * diff__ + (rmin__)); \
} \
if ((gmin != 0.0) || (gmax != 1.0)) \
{ \
diff__ = (double)(gmax__) - (double)(gmin__); \
libclut__(ramp, green, type, LIBCLUT_VALUE * diff__ + (gmin__)); \
} \
if ((bmin != 0.0) || (bmax != 1.0)) \
{ \
diff__ = (double)(bmax__) - (double)(bmin__); \
libclut__(ramp, blue, type, LIBCLUT_VALUE * diff__ + (bmin__)); \
} \
} \
while (0)
/**
* Changes the blackpoint and the whitepoint, using CIE xyY.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rmin The red component value of the blackpoint.
* @param rmax The red component value of the whitepoint.
* @param gmin The green component value of the blackpoint.
* @param gmax The green component value of the whitepoint.
* @param bmin The blue component value of the blackpoint.
* @param bmax The blue component value of the whitepoint.
*/
#define libclut_cie_limits(ramp, max, type, rmin, rmax, gmin, gmax, bmin, bmax) \
do \
{ \
double rd__ = (rmax) - (rmin), gd__ = (gmax) - (gmin), bd__ = (bmax) - (bmin); \
libclut_cie__(ramp, max, type, (rmin == gmin) && (gmin == bmin) && \
(rmax == gmax) && (gmax == bmax), (rmin != 0.0) || (rmax != 1.0), \
(gmin != 0.0) || (gmax != 1.0), (bmin != 0.0) || (bmax != 1.0), \
Y__ * rd__ + rmin, Y__ * gd__ + gmin, Y__ * bd__ + bmin); \
} \
while (0)
/**
* Manipulate the colour curves using a function on the sRGB colour space.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Function to manipulate the red colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param g Function to manipulate the green colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param b Function to manipulate the blue colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
*/
#define libclut_manipulate(ramp, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (r) libclut__(ramp, red, type, m__ * r(LIBCLUT_VALUE / m__)); \
if (g) libclut__(ramp, green, type, m__ * g(LIBCLUT_VALUE / m__)); \
if (b) libclut__(ramp, blue, type, m__ * b(LIBCLUT_VALUE / m__)); \
} \
while (0)
/**
* Manipulate the colour curves using a function on the CIE xyY colour space.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Function to manipulate the red colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param g Function to manipulate the green colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param b Function to manipulate the blue colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
*/
#define libclut_cie_manipulate(ramp, max, type, r, g, b) \
libclut_cie__(ramp, max, type, r && g && b, r, g, b, r(Y__), g(Y__), b(Y__))
/**
* Resets colour curvers to linear mappings.
* (Identity mapping if imaginged to map from [0, 1] to [0, 1].)
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to reset the red colour curve.
* @param g Whether to reset the green colour curve.
* @param b Whether to reset the blue colour curve.
*/
#define libclut_start_over(ramp, max, type, r, g, b) \
do \
{ \
size_t i__; \
double m__; \
if (r) \
{ \
m__ = (double)((ramp)->red_size - 1); \
for (i__ = 0; i__ < (ramp)->red_size; i__) \
(ramp)->red[i__] = (type)((i__ / m__) * (max)); \
} \
if (g) \
{ \
m__ = (double)((ramp)->green_size - 1); \
for (i__ = 0; i__ < (ramp)->green_size; i__) \
(ramp)->green[i__] = (type)((i__ / m__) * (max)); \
} \
if (b) \
{ \
m__ = (double)((ramp)->blue_size - 1); \
for (i__ = 0; i__ < (ramp)->blue_size; i__) \
(ramp)->blue[i__] = (type)((i__ / m__) * (max)); \
} \
} \
while (0)
/**
* Clip colour curves to only map to values between the minimum and maximum.
* This should be done, before apply the curves, and before applying changes
* with limited domain.
*
* Values below 0 are set to 0, and values above `max` are set to `max`.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to clip the red colour curve.
* @param g Whether to clip the green colour curve.
* @param b Whether to clip the blue colour curve.
*/
#define libclut_clip(ramp, max, type, r, g, b) \
do \
{ \
if (r) libclut__(ramp, red, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \
if (g) libclut__(ramp, green, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \
if (b) libclut__(ramp, blue, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \
} \
while (0)
/**
* Truncates a value to fit a boundary.
*
* None of the parameter may have side-effects.
*
* Intended for internal use.
*
* @param min The minimum allowed value.
* @param val The current value.
* @param max The maximum allowed value.
* @return The value truncated into its boundary.
*/
#define libclut_clip__(min, val, max) \
(LIBCLUT_VALUE < min ? min : LIBCLUT_VALUE > max ? max : LIBCLUT_VALUE)
/**
* Emulates low colour resolution.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param x The desired emulated red encoding resolution, 0 for unchanged.
* @param y The desired emulated red output resolution, 0 for unchanged.
* @param x The desired emulated green encoding resolution, 0 for unchanged.
* @param y The desired emulated green output resolution, 0 for unchanged.
* @param x The desired emulated blue encoding resolution, 0 for unchanged.
* @param y The desired emulated blue output resolution, 0 for unchanged.
*/
#define libclut_lower_resolution(ramp, max, type, rx, ry, gx, gy, bx, by) \
do \
{ \
libclut_lower_resolution__(ramp, red, max, type, rx, ry); \
libclut_lower_resolution__(ramp, green, max, type, gx, gy); \
libclut_lower_resolution__(ramp, blue, max, type, bx, by); \
} \
while (0)
/**
* Emulates low colour resolution of a channel.
*
* None of the parameter may have side-effects.
*
* Intended for internal use.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param channel The channel, must be either "red", "green", or "blue".
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param x The desired emulated encoding resolution, 0 for unchanged.
* @param y The desired emulated output resolution, 0 for unchanged.
*/
#define libclut_lower_resolution__(ramp, channel, max, type, x, y) \
do \
{ \
if ((x) || (y)) \
{ \
size_t x__, y__, i__, n__ = (ramp)->channel##_size; \
double xm__ = (double)((x) - 1), ym__ = (double)((y) - 1); \
type c__[n__]; /* Do not use alloca! */ \
for (i__ = 0; i__ < n__; i__++) \
{ \
if ((x__ = i__), (x)) \
{ \
x__ = (size_t)((double)i__ * (x) / n__); \
x__ = (size_t)((double)x__ * i__ / xm__); \
} \
if (!(y)) \
c__[i__] = (ramp)->channel[x__]; \
else \
{ \
y__ = (size_t)((double)((ramp)->channel[x__]) / (max) * ym__ + 0.5); \
c__[i__] = (type)((double)y__ / ym__ * (max)); \
} \
} \
memcpy((ramp)->channel, c__, n__ * sizeof(type)); \
} \
} \
while (0)
/**
* Applies a filter or calibration.
*
* None of the parameter may have side-effects.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param filter Same as `ramp`, but for the filter to apply.
* @param fmax Same as `max`, but for the filter to apply.
* @param ftype Same as `type`, but for the filter to apply. (Not actually used).
* @param r Whether to apply the filter for the red curve.
* @param g Whether to apply the filter for the green curve.
* @param b Whether to apply the filter for the blue curve.
*/
#define libclut_apply(ramp, max, type, filter, fmax, ftype, r, g, b)
do \
{ \
if (r) libclut_apply__(ramp, max, type, filter, fmax, ftype, red); \
if (g) libclut_apply__(ramp, max, type, filter, fmax, ftype, green); \
if (b) libclut_apply__(ramp, max, type, filter, fmax, ftype, blue); \
} \
while (0)
/**
* Applies a filter or calibration for one channel.
*
* None of the parameter may have side-effects.
*
* Intended for internal use.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param filter Same as `ramp`, but for the filter to apply.
* @param fmax Same as `max`, but for the filter to apply.
* @param ftype Same as `type`, but for the filter to apply. (Not actually used).
* @param channel The channel, must be either "red", "green", or "blue".
*/
#define libclut_apply__(ramp, max, type, filter, fmax, ftype, channel)
do \
{ \
size_t i__, rn__ = (ramp)->channel##_size, fn__ = (filter)->channel##_size; \
size_t x__, rm__ = (double)(max), m__ = (double)(max) / (double)(fmax); \
for (i__ = 0; i__ < rn__; i__++) \
{ \
x__ = (size_t)((double)((ramp)->channel[i__]) / rm__ * fn__); \
(ramp)->channel[i__] = (type)((double)((filter)->channel[x__]) * m__); \
} \
} \
while (0)
/**
* Modify a ramp.
*
* None of the parameter may have side-effects.
*
* This is intended for internal use.
*
* @param ramp Pointer to the gamma ramps, must have and array
* named `channel` and a scalar named `channel` followed
* by "_size".
* @param channel The channel, must be either "red", "green", or "blue".
* @param type The data type used for each stop in the ramps.
* @param expr Expression that evalutes the value a stop should have.
* It can use the variable `LIBCLUT_VALUE` to get the
* current value of the stop.
*/
#define libclut__(ramp, channel, type, expr) \
do \
{ \
size_t i__, n__ = (ramp)->channel##_size; \
type LIBCLUT_VALUE; \
for (i__ = 0; i__ < n__; i__++) \
{ \
LIBCLUT_VALUE = (ramp)->channel[i__]; \
(ramp)->channel[i__] = (type)(expr); \
} \
} \
while (0)
/**
* A ramp set in CIE xyY.
*
* None of the parameter may have side-effects.
*
* This is intended for internal use.
*
* @param ramp Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param utest Whether all channels can be modified at the same time.
* This test does not have to include the ramp size.
* @param rtest Whether the red channel have to be modified.
* @param gtest Whether the green channel have to be modified.
* @param btest Whether the blue channel have to be modified.
* @param rexpr Expression calculating the intensity of the red channel.
* The current value is stored in `Y__`.
* @param gexpr Expression calculating the intensity of the green channel.
* The current value is stored in `Y__`.
* @param bexpr Expression calculating the intensity of the blue channel.
* The current value is stored in `Y__`.
*/
#define libclut_cie__(ramp, max, type, utest, rtest, gtest, btest, rexpr, gexpr, bexpr) \
do \
{ \
size_t rn__ = (ramp)->red_size; \
size_t gn__ = (ramp)->green_size; \
size_t bn__ = (ramp)->blue_size; \
size_t i__; \
double x__, y__, Y__, r__, g__, b__; \
type* rs__ = (ramp)->red; \
type* gs__ = (ramp)->green; \
type* bs__ = (ramp)->blue; \
if ((rn__ == gn__) && (gn__ == bn__) && (utest)) \
{ \
if (!(rtest)) \
break; \
for (i__ = 0; i__ < rn__; i__) \
{ \
libclut_model_srgb_to_ciexyy(rs__[i__] / ((double)(max)), gs__[i__] / ((double)(max)), \
bs__[i__] / ((double)(max)), &x__, &y__, &Y__); \
libclut_model_ciexyy_to_srgb(x__, y__, rexpr, &r__, &g__, &b__); \
rs__[i__] = (type)(r__ * (double)(max)); \
gs__[i__] = (type)(g__ * (double)(max)); \
bs__[i__] = (type)(b__ * (double)(max)); \
} \
} \
else \
{ \
if (!(rtest) && !(gtest) && !(btest)) \
break; \
libclut_model_srgb_to_ciexyy(rs__[i__] / ((double)(max)), gs__[i__] / ((double)(max)), \
bs__[i__] / ((double)(max)), &x__, &y__, &Y__); \
if (rtest) \
for (i__ = 0; i__ < rn__; i__) \
{ \
libclut_model_ciexyy_to_srgb(x__, y__, rexpr, &r__, &g__, &b__); \
rs__[i__] = (type)((r__ * (double)(max)); \
} \
if (gtest) \
for (i__ = 0; i__ < gn__; i__) \
{ \
libclut_model_ciexyy_to_srgb(x__, y__, gexpr, &r__, &g__, &b__); \
gs__[i__] = (type)(g__ * (double)(max)); \
} \
if (btest) \
for (i__ = 0; i__ < bn__; i__) \
{ \
libclut_model_ciexyy_to_srgb(x__, y__, nexpr, &r__, &g__, &b__); \
bs__[i__] = (type)(b__ * (double)(max)); \
} \
} \
} \
while (0)
#if __GNUC__
#define LIBCLUT_GCC_ONLY__(x) x
#else
#define LIBCLUT_GCC_ONLY__(x) /* do nothing */
#endif
/**
* Convert one component from [0, 1] linear RGB to [0, 1] sRGB.
*
* @param c The linear RGB value.
* @return Corresponding sRGB value.
*/
LIBCLUT_GCC_ONLY__(__attribute__((const, leaf)))
double libclut_model_linear_to_standard1(double c);
/**
* Convert [0, 1] linear RGB to [0, 1] sRGB.
*
* @param r Pointer to the linear red component,
* and output parameter for the red component.
* @param g Pointer to the linear green component,
* and output parameter for the green component.
* @param b Pointer to the linear blue component,
* and output parameter for the blue component.
*/
void libclut_model_linear_to_standard(double* r, double* g, double* b);
/**
* Convert one component from [0, 1] sRGB to [0, 1] linear RGB.
*
* @param c The sRGB value.
* @return Corresponding linear RGB value.
*/
LIBCLUT_GCC_ONLY__(__attribute__((const, leaf)))
double libclut_model_standard_to_linear1(double c);
/**
* Convert [0, 1] sRGB to [0, 1] linear RGB.
*
*
* @param r Pointer to the red component, and output
* parameter for the linear red component.
* @param g Pointer to the green component, and output
* parameter for the linear green component.
* @param b Pointer to the blue component, and output
* parameter for the linear blue component.
*/
void libclut_model_standard_to_linear(double* r, double* g, double* b);
/**
* Convert CIE xyY to CIE XYZ.
*
* @param x The x parameter.
* @param y The y parameter.
* @param Y The Y parameter. This is also the Y (middle) parameter for the CIE XYZ colour.
* @param X Output parameter for the X parameter.
* @param Z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((leaf)))
void libclut_model_ciexyy_to_ciexyz(double x, double y, double Y, double* X, double* Z);
/**
* Convert CIE XYZ to CIE xyY.
*
* @param X The X parameter.
* @param Y The Y parameter. This is also the Y (last) parameter for the CIE xyY colour.
* @param Z The Z parameter.
* @param x Output parameter for the x parameter.
* @param y Output parameter for the y parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((leaf)))
void libclut_model_ciexyz_to_ciexyy(double X, double Y, double Z, double* x, double* y);
/**
* Convert CIE XYZ to [0, 1] linear RGB.
*
* @param X The X parameter.
* @param Y The Y parameter.
* @param Z The Z parameter.
* @param r Output parameter for the red component.
* @param g Output parameter for the green component.
* @param b Output parameter for the blue component.
*/
LIBCLUT_GCC_ONLY__(__attribute__((leaf)))
void libclut_model_ciexyz_to_linear(double X, double Y, double Z, double* r, double* g, double* b);
/**
* Convert [0, 1] linear RGB to CIE XYZ.
*
* @param r The red component.
* @param g The green component.
* @param b The blue component.
* @param X Output parameter for the X parameter.
* @param Y Output parameter for the Y parameter.
* @param Z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((leaf)))
void libclut_model_linear_to_ciexyz(double r, double g, double b, double* X, double* Y, double* Z);
/**
* Convert [0, 1] linear RGB to CIE xyY.
*
* @param r The red component.
* @param g The green component.
* @param b The blue component.
* @param x Output parameter for the x parameter.
* @param y Output parameter for the y parameter.
* @param Y Output parameter for the Y parameter.
*/
void libclut_model_srgb_to_ciexyy(double r, double g, double b, double* x, double* y, double* Y);
/**
* Convert CIE xyY to [0, 1] sRGB.
*
* @param x The x parameter.
* @param y The y parameter.
* @param Y The Y parameter.
* @param r Output parameter for the red component.
* @param g Output parameter for the green component.
* @param b Output parameter for the blue component.
*/
void libclut_model_ciexyy_to_srgb(double x, double y, double Y, double* r, double* g, double* b);
/**
* Convert from CIE XYZ to CIE L*a*b*.
*
* @param X The X parameter.
* @param Y The Y parameter.
* @param Z The Z parameter.
* @param L Output parameter for the L* component.
* @param a Output parameter for the a* component.
* @param b Output parameter for the b* component.
*/
LIBCLUT_GCC_ONLY__(__attribute__((leaf)))
void libclut_model_ciexyz_to_cielab(double X, double Y, double Z, double* L, double* a, double* b);
/**
* Convert from CIE L*a*b* to CIE XYZ.
*
* @param L The L* component.
* @param a The a component.
* @param b The b component.
* @param X Output parameter for the X parameter.
* @param Y Output parameter for the Y parameter.
* @param Z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((leaf)))
void libclut_model_cielab_to_xiexyz(double L, double a, double b, double* X, double* Y, double* Z);
/**
* Convert the distance (∆E*_ab) between two [0, 1] sRGB colours.
*
* @param r1 The red component of the first colour.
* @param g1 The green component of the first colour.
* @param b1 The blue component of the first colour.
* @param r2 The red component of the second colour.
* @param g2 The green component of the second colour.
* @param b2 The blue component of the second colour.
* @return The difference.
*/
double libclut_model_delta_e(double r1, double g1, double b1, double r2, double g2, double b2);
#endif
|