/** * Copyright © 2016 Mattias Andrée * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef LIBCLUT_H #define LIBCLUT_H #include #include #include /* This is to avoid warnings about comparing double, which is safe in our case. { */ #if defined(__GNUC__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wfloat-equal" #endif static inline int libclut_eq__(double a, double b) { return a == b; } static inline int libclut_1__(double x) { return libclut_eq__(x, 1); } static inline int libclut_0__(double x) { return libclut_eq__(x, 0); } #if defined(__GNUC__) # pragma GCC diagnostic pop #endif /* } */ /** * Apply contrast correction on the colour curves using sRGB. * * In this context, contrast is a measure of difference between * the whitepoint and blackpoint, if the difference is 0 than * they are both grey. * * None of the parameter may have side-effects. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param r The contrast parameter for the red curve. * @param g The contrast parameter for the green curve. * @param b The contrast parameter for the blue curve. */ #define libclut_rgb_contrast(clut, max, type, r, g, b) \ do \ { \ const double h__ = (double)5 / 10; \ if (!libclut_1__(r)) \ libclut__(clut, red, type, (LIBCLUT_VALUE - (max) * h__) * (r) + (max) * h__); \ if (!libclut_1__(g)) \ libclut__(clut, green, type, (LIBCLUT_VALUE - (max) * h__) * (g) + (max) * h__); \ if (!libclut_1__(b)) \ libclut__(clut, blue, type, (LIBCLUT_VALUE - (max) * h__) * (b) + (max) * h__); \ } \ while (0) /** * Apply contrast correction on the colour curves using CIE xyY. * * In this context, contrast is a measure of difference between * the whitepoint and blackpoint, if the difference is 0 than * they are both grey. * * None of the parameter may have side-effects. * * Requires linking with '-lclut'. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param r The contrast parameter for the red curve. * @param g The contrast parameter for the green curve. * @param b The contrast parameter for the blue curve. */ #define libclut_cie_contrast(clut, max, type, r, g, b) \ do \ { \ const double h__ = (double)5 / 10; \ libclut_cie__(clut, max, type, libclut_eq__((r), (g)) && libclut_eq__((g), (b)), \ !libclut_1__(r), !libclut_1__(g), !libclut_1__(b), \ (Y__ - h__) * (r) + h__, (Y__ - h__) * (g) + h__, (Y__ - h__) * (b) + h__); \ } \ while (0) /** * Apply brightness correction on the colour curves using sRGB. * * In this context, brightness is a measure of the whiteness of the whitepoint. * * None of the parameter may have side-effects. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param r The brightness parameter for the red curve. * @param g The brightness parameter for the green curve. * @param b The brightness parameter for the blue curve. */ #define libclut_rgb_brightness(clut, max, type, r, g, b) \ do \ { \ if (!libclut_1__(r)) libclut__(clut, red, type, LIBCLUT_VALUE * (r)); \ if (!libclut_1__(g)) libclut__(clut, green, type, LIBCLUT_VALUE * (g)); \ if (!libclut_1__(b)) libclut__(clut, blue, type, LIBCLUT_VALUE * (b)); \ } \ while (0) /** * Apply brightness correction on the colour curves using CIE xyY. * * In this context, brightness is a measure of the whiteness of the whitepoint. * * None of the parameter may have side-effects. * * Requires linking with '-lclut'. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param r The brightness parameter for the red curve. * @param g The brightness parameter for the green curve. * @param b The brightness parameter for the blue curve. */ #define libclut_cie_brightness(clut, max, type, r, g, b) \ libclut_cie__(clut, max, type, libclut_eq__((r), (g)) && libclut_eq__((g), (b)), \ !libclut_1__(r), !libclut_1__(g), !libclut_1__(b), \ Y__ * (r), Y__ * (g), Y__ * (b)) /** * Convert the curves from formatted in standard RGB to linear RGB. * * None of the parameter may have side-effects. * * Requires linking with '-lclut', or '-lm' if * `libclut_model_standard_to_linear1` is not undefined. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param r Whether to convert the red colour curve. * @param g Whether to convert the green colour curve. * @param b Whether to convert the blue colour curve. */ #define libclut_linearise(clut, max, type, r, g, b) \ do \ { \ double m__ = (double)(max); \ if (r) \ libclut__(clut, red, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \ if (g) \ libclut__(clut, green, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \ if (b) \ libclut__(clut, blue, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \ } \ while (0) /** * Convert the curves from formatted in linear RGB to standard RGB. * * None of the parameter may have side-effects. * * Requires linking with '-lclut', or '-lm' if * `libclut_model_linear_to_standard1` is not undefined. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param r Whether to convert the red colour curve. * @param g Whether to convert the green colour curve. * @param b Whether to convert the blue colour curve. */ #define libclut_standardise(clut, max, type, r, g, b) \ do \ { \ double m__ = (double)(max); \ if (r) \ libclut__(clut, red, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \ if (g) \ libclut__(clut, green, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \ if (b) \ libclut__(clut, blue, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \ } \ while (0) /** * Apply gamma correction on the colour curves. * * None of the parameter may have side-effects. * * Requires linking with '-lm'. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param r The gamma parameter the red colour curve. * @param g The gamma parameter the green colour curve. * @param b The gamma parameter the blue colour curve. */ #define libclut_gamma(clut, max, type, r, g, b) \ do \ { \ double m__ = (double)(max); \ if (!libclut_1__(r)) \ libclut__(clut, red, type, m__ * pow(LIBCLUT_VALUE / m__, 1 / (double)(r))); \ if (!libclut_1__(g)) \ libclut__(clut, green, type, m__ * pow(LIBCLUT_VALUE / m__, 1 / (double)(g))); \ if (!libclut_1__(b)) \ libclut__(clut, blue, type, m__ * pow(LIBCLUT_VALUE / m__, 1 / (double)(b))); \ } \ while (0) /** * Reverse the colour curves (negative image with gamma preservation.) * * None of the parameter may have side-effects. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * This parameter is not used, it is just a dummy, to unify * the API with the other functions. * @param type The data type used for each stop in the ramps. * @param r Whether to invert the red colour curve. * @param g Whether to invert the green colour curve. * @param b Whether to invert the blue colour curve. */ #define libclut_negative(clut, max, type, r, g, b) \ do \ { \ size_t i__, n__; \ type t__; \ if (r) \ for (i__ = 0, n__ = (clut)->red_size; i__ < (n__ >> 1); i__++) \ { \ t__ = (clut)->red[i__]; \ (clut)->red[i__] = (clut)->red[n__ - i__ - 1]; \ (clut)->red[n__ - i__ - 1] = t__; \ } \ if (g) \ for (i__ = 0, n__ = (clut)->green_size; i__ < (n__ >> 1); i__++) \ { \ t__ = (clut)->green[i__]; \ (clut)->green[i__] = (clut)->green[n__ - i__ - 1]; \ (clut)->green[n__ - i__ - 1] = t__; \ } \ if (b) \ for (i__ = 0, n__ = (clut)->blue_size; i__ < (n__ >> 1); i__++) \ { \ t__ = (clut)->blue[i__]; \ (clut)->blue[i__] = (clut)->blue[n__ - i__ - 1]; \ (clut)->blue[n__ - i__ - 1] = t__; \ } \ } \ while (0) /** * Invert the colour curves (negative image with gamma invertion), using sRGB. * * None of the parameter may have side-effects. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param r Whether to invert the red colour curve. * @param g Whether to invert the green colour curve. * @param b Whether to invert the blue colour curve. */ #define libclut_rgb_invert(clut, max, type, r, g, b) \ do \ { \ if (r) libclut__(clut, red, type, (max) - LIBCLUT_VALUE); \ if (g) libclut__(clut, green, type, (max) - LIBCLUT_VALUE); \ if (b) libclut__(clut, blue, type, (max) - LIBCLUT_VALUE); \ } \ while (0) /** * Invert the colour curves (negative image with gamma invertion), using CIE xyY. * * None of the parameter may have side-effects. * * Requires linking with '-lclut'. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param r Whether to invert the red colour curve. * @param g Whether to invert the green colour curve. * @param b Whether to invert the blue colour curve. */ #define libclut_cie_invert(clut, max, type, r, g, b) \ libclut_cie__(clut, max, type, (r) && (g) && (b), r, g, b, 1 - Y__, 1 - Y__, 1 - Y__) /** * Apply S-curve correction on the colour curves. * This is intended for fine tuning LCD monitors, * 4.5 is good value start start testing at. * You would probably like to use rgb_limits before * this to adjust the blackpoint as that is the * only way to adjust the blackpoint on many LCD * monitors. * * None of the parameter may have side-effects. * * Requires linking with '-lm'. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param rp Pointer to the sigmoid parameter for the red curve. `NULL` for no adjustment. * @param gp Pointer to the sigmoid parameter for the green curve. `NULL` for no adjustment. * @param bp Pointer to the sigmoid parameter for the blue curve. `NULL` for no adjustment. */ #define libclut_sigmoid(clut, max, type, rp, gp, bp) \ do \ { \ double *gcc_6_1_1_workaround, s__, m__ = (double)(max); \ size_t i__; \ const double h__ = (double)5 / 10; \ gcc_6_1_1_workaround = rp; \ if (gcc_6_1_1_workaround) \ for (i__ = 0, s__ = *gcc_6_1_1_workaround; i__ < (clut)->red_size; i__++) \ if ((clut)->red[i__] && ((clut)->red[i__] != (max))) \ (clut)->red[i__] = (type)(m__ * (h__ - log(m__ / (clut)->red[i__] - 1) / s__)); \ gcc_6_1_1_workaround = gp; \ if (gcc_6_1_1_workaround) \ for (i__ = 0, s__ = *gcc_6_1_1_workaround; i__ < (clut)->green_size; i__++) \ if ((clut)->green[i__] && ((clut)->green[i__] != (max))) \ (clut)->green[i__] = (type)(m__ * (h__ - log(m__ / (clut)->green[i__] - 1) / s__)); \ gcc_6_1_1_workaround = bp; \ if (gcc_6_1_1_workaround) \ for (i__ = 0, s__ = *gcc_6_1_1_workaround; i__ < (clut)->blue_size; i__++) \ if ((clut)->blue[i__] && ((clut)->blue[i__] != (max))) \ (clut)->blue[i__] = (type)(m__ * (h__ - log(m__ / (clut)->blue[i__] - 1) / s__)); \ } \ while (0) /** * Changes the blackpoint and the whitepoint, using sRGB. * * None of the parameter may have side-effects. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param rmin The red component value of the blackpoint. * @param rmax The red component value of the whitepoint. * @param gmin The green component value of the blackpoint. * @param gmax The green component value of the whitepoint. * @param bmin The blue component value of the blackpoint. * @param bmax The blue component value of the whitepoint. */ #define libclut_rgb_limits(clut, max, type, rmin, rmax, gmin, gmax, bmin, bmax) \ do \ { \ double diff__; \ if (!libclut_0__(rmin) || !libclut_1__(rmax)) \ { \ diff__ = (double)(rmax) - (double)(rmin); \ libclut__(clut, red, type, LIBCLUT_VALUE / (double)(max) * diff__ + (rmin)); \ } \ if (!libclut_0__(gmin) || !libclut_1__(gmax)) \ { \ diff__ = (double)(gmax) - (double)(gmin); \ libclut__(clut, green, type, LIBCLUT_VALUE / (double)(max) * diff__ + (gmin)); \ } \ if (!libclut_0__(bmin) || !libclut_1__(bmax)) \ { \ diff__ = (double)(bmax) - (double)(bmin); \ libclut__(clut, blue, type, LIBCLUT_VALUE / (double)(max) * diff__ + (bmin)); \ } \ } \ while (0) /** * Changes the blackpoint and the whitepoint, using CIE xyY. * * None of the parameter may have side-effects. * * Requires linking with '-lclut'. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param rmin The red component value of the blackpoint. * @param rmax The red component value of the whitepoint. * @param gmin The green component value of the blackpoint. * @param gmax The green component value of the whitepoint. * @param bmin The blue component value of the blackpoint. * @param bmax The blue component value of the whitepoint. */ #define libclut_cie_limits(clut, max, type, rmin, rmax, gmin, gmax, bmin, bmax) \ do \ { \ double rd__ = (rmax) - (rmin), gd__ = (gmax) - (gmin), bd__ = (bmax) - (bmin); \ libclut_cie__(clut, max, type, \ libclut_eq__((rmin), (gmin)) && libclut_eq__((gmin), (bmin)) && \ libclut_eq__((rmax), (gmax)) && libclut_eq__((gmax), (bmax)), \ !libclut_0__(rmin) || !libclut_1__(rmax), \ !libclut_0__(gmin) || !libclut_1__(gmax), \ !libclut_0__(bmin) || !libclut_1__(bmax), \ Y__ * rd__ + (rmin), Y__ * gd__ + (gmin), Y__ * bd__ + (bmin)); \ } \ while (0) /** * Manipulate the colour curves using a function on the sRGB colour space. * * None of the parameter may have side-effects. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param r Function to manipulate the red colour curve, should either * be `NULL` or map a [0, 1] `double` to a [0, 1] `double`. * @param g Function to manipulate the green colour curve, should either * be `NULL` or map a [0, 1] `double` to a [0, 1] `double`. * @param b Function to manipulate the blue colour curve, should either * be `NULL` or map a [0, 1] `double` to a [0, 1] `double`. */ #define libclut_manipulate(clut, max, type, r, g, b) \ do \ { \ double m__ = (double)(max); \ double (*gcc_6_1_1_workaround__)(double); \ gcc_6_1_1_workaround__ = r; \ if (gcc_6_1_1_workaround__) \ libclut__(clut, red, type, m__ * (gcc_6_1_1_workaround__)(LIBCLUT_VALUE / m__)); \ gcc_6_1_1_workaround__ = g; \ if (gcc_6_1_1_workaround__) \ libclut__(clut, green, type, m__ * (gcc_6_1_1_workaround__)(LIBCLUT_VALUE / m__)); \ gcc_6_1_1_workaround__ = b; \ if (gcc_6_1_1_workaround__) \ libclut__(clut, blue, type, m__ * (gcc_6_1_1_workaround__)(LIBCLUT_VALUE / m__)); \ } \ while (0) /** * Manipulate the colour curves using a function on the CIE xyY colour space. * * None of the parameter may have side-effects. * * Requires linking with '-lclut'. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param r Function to manipulate the red colour curve, should either * be `NULL` or map a [0, 1] `double` to a [0, 1] `double`. * @param g Function to manipulate the green colour curve, should either * be `NULL` or map a [0, 1] `double` to a [0, 1] `double`. * @param b Function to manipulate the blue colour curve, should either * be `NULL` or map a [0, 1] `double` to a [0, 1] `double`. */ #define libclut_cie_manipulate(clut, max, type, r, g, b) \ libclut_cie__(clut, max, type, (r) && (g) && (b), r, g, b, (r)(Y__), (g)(Y__), (b)(Y__)) /** * Resets colour curvers to linear mappings. * (Identity mapping if imaginged to map from [0, 1] to [0, 1].) * * None of the parameter may have side-effects. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param r Whether to reset the red colour curve. * @param g Whether to reset the green colour curve. * @param b Whether to reset the blue colour curve. */ #define libclut_start_over(clut, max, type, r, g, b) \ do \ { \ size_t i__; \ double m__, max__ = (double)(max); \ if (r) \ { \ m__ = (double)((clut)->red_size - 1); \ for (i__ = 0; i__ < (clut)->red_size; i__++) \ (clut)->red[i__] = (type)(((double)i__ / m__) * max__); \ } \ if (g) \ { \ m__ = (double)((clut)->green_size - 1); \ for (i__ = 0; i__ < (clut)->green_size; i__++) \ (clut)->green[i__] = (type)(((double)i__ / m__) * max__); \ } \ if (b) \ { \ m__ = (double)((clut)->blue_size - 1); \ for (i__ = 0; i__ < (clut)->blue_size; i__++) \ (clut)->blue[i__] = (type)(((double)i__ / m__) * max__); \ } \ } \ while (0) /** * Clip colour curves to only map to values between the minimum and maximum. * This should be done, before apply the curves, and before applying changes * with limited domain. * * Values below 0 are set to 0, and values above `max` are set to `max`. * * None of the parameter may have side-effects. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param r Whether to clip the red colour curve. * @param g Whether to clip the green colour curve. * @param b Whether to clip the blue colour curve. */ #define libclut_clip(clut, max, type, r, g, b) \ do \ { \ if (r) libclut__(clut, red, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \ if (g) libclut__(clut, green, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \ if (b) libclut__(clut, blue, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \ } \ while (0) /** * Truncates a value to fit a boundary. * * None of the parameter may have side-effects. * * Intended for internal use. * * @param min The minimum allowed value. * @param val The current value. * @param max The maximum allowed value. * @return The value truncated into its boundary. */ #define libclut_clip__(min, val, max) \ (LIBCLUT_VALUE < (min) ? (min) : LIBCLUT_VALUE > (max) ? (max) : LIBCLUT_VALUE) /** * Emulates low colour resolution. * * None of the parameter may have side-effects. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param rx The desired emulated red encoding resolution, 0 for unchanged. * @param ry The desired emulated red output resolution, 0 for unchanged. * @param gx The desired emulated green encoding resolution, 0 for unchanged. * @param gy The desired emulated green output resolution, 0 for unchanged. * @param bx The desired emulated blue encoding resolution, 0 for unchanged. * @param by The desired emulated blue output resolution, 0 for unchanged. */ #define libclut_lower_resolution(clut, max, type, rx, ry, gx, gy, bx, by) \ do \ { \ libclut_lower_resolution__(clut, red, max, type, rx, ry); \ libclut_lower_resolution__(clut, green, max, type, gx, gy); \ libclut_lower_resolution__(clut, blue, max, type, bx, by); \ } \ while (0) /** * Emulates low colour resolution of a channel. * * None of the parameter may have side-effects. * * Intended for internal use. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param channel The channel, must be either "red", "green", or "blue". * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param x The desired emulated encoding resolution, 0 for unchanged. * @param y The desired emulated output resolution, 0 for unchanged. */ #define libclut_lower_resolution__(clut, channel, max, type, x, y) \ do \ if ((x) || (y)) \ { \ size_t x__, y__, i__, n__ = (clut)->channel##_size; \ double xm__ = (double)((x) - 1), ym__ = (double)((y) - 1); \ double m__ = (double)(max), nm__ = (double)(n__ - 1); \ type c__[n__]; /* Do not use alloca! */ \ const double h__ = (double)5 / 10; \ for (i__ = 0; i__ < n__; i__++) \ { \ if ((x__ = i__), (x)) \ { \ x__ = (size_t)((double)i__ * (double)(x) / (double)n__); \ x__ = (size_t)((double)x__ * nm__ / xm__); \ } \ if (!(y)) \ c__[i__] = (clut)->channel[x__]; \ else \ { \ y__ = (size_t)((double)((clut)->channel[x__]) / (max) * ym__ + h__); \ c__[i__] = (type)((double)y__ / ym__ * m__); \ } \ } \ memcpy((clut)->channel, c__, n__ * sizeof(type)); \ } \ while (0) /** * Translates a gamma ramp structure to another gamma ramp structure type. * * None of the parameter may have side-effects. * * @param dclut Pointer to the desired gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars `red_size`, * `green_size`, and `blue_size`. Ramp structures from * libgamma can be used. * @param dmax The maximum value on each stop in the ramps in `dclut`. * @param dtype The data type used for each stop in the ramps in `dclut`. * @param sclut Pointer to the set gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars `red_size`, * `green_size`, and `blue_size`. Ramp structures from * libgamma can be used. * @param smax The maximum value on each stop in the ramps in `sclut`. * @param stype The data type used for each stop in the ramps in `sclut`. * (Not actually used.) */ #define libclut_translate(dclut, dmax, dtype, sclut, smax, stype) \ do \ { \ libclut_translate__(dclut, dmax, dtype, sclut, smax, stype, red); \ libclut_translate__(dclut, dmax, dtype, sclut, smax, stype, green); \ libclut_translate__(dclut, dmax, dtype, sclut, smax, stype, blue); \ } \ while (0) /** * Translates a gamma ramp structure to another gamma ramp structure type. * * None of the parameter may have side-effects. * * This is intended for internal use. * * @param dclut Pointer to the desired gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars `red_size`, * `green_size`, and `blue_size`. Ramp structures from * libgamma can be used. * @param dmax The maximum value on each stop in the ramps in `dclut`. * @param dtype The data type used for each stop in the ramps in `dclut`. * @param sclut Pointer to the set gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars `red_size`, * `green_size`, and `blue_size`. Ramp structures from * libgamma can be used. * @param smax The maximum value on each stop in the ramps in `sclut`. * @param stype The data type used for each stop in the ramps in `sclut`. * (Not actually used.) * @param channel The channel, must be either "red", "green", or "blue". */ #define libclut_translate__(dclut, dmax, dtype, sclut, smax, stype, channel) \ do \ { \ size_t di__, si__, sj__; \ size_t dn__ = (dclut)->channel##_size; \ size_t sn__ = (sclut)->channel##_size; \ double dm__ = (double)(dmax); \ double sm__ = (double)(smax); \ double smdm__ = sm__ / dm__; \ double x__, y__; \ if (dn__ == sn__) \ for (di__ = 0; di__ < dn__; di__++) \ { \ y__ = (double)((sclut)->channel[si__]) * smdm__; \ (dclut)->channel[di__] = (dtype)y__; \ } \ else \ for (di__ = 0; di__ < dn__; di__++) \ { \ x__ = di__ / (dn__ - 1) * (sn__ - 1); \ si__ = (size_t)(x__); \ sj__ = si__ + (si__ != sn__); \ x__ -= (double)si__; \ y__ = (double)((sclut)->channel[si__]) * (1 - x__); \ y__ += (double)((sclut)->channel[sj__]) * (x__); \ y__ *= smdm__; \ (dclut)->channel[di__] = (dtype)y__; \ } \ } \ while (0) /** * Applies a filter or calibration. * * None of the parameter may have side-effects. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param filter Same as `clut`, but for the filter to apply. * @param fmax Same as `max`, but for the filter to apply. * @param ftype Same as `type`, but for the filter to apply. (Not actually used). * @param r Whether to apply the filter for the red curve. * @param g Whether to apply the filter for the green curve. * @param b Whether to apply the filter for the blue curve. */ #define libclut_apply(clut, max, type, filter, fmax, ftype, r, g, b) \ do \ { \ if (r) libclut_apply__(clut, max, type, filter, fmax, ftype, red); \ if (g) libclut_apply__(clut, max, type, filter, fmax, ftype, green); \ if (b) libclut_apply__(clut, max, type, filter, fmax, ftype, blue); \ } \ while (0) /** * Applies a filter or calibration for one channel. * * None of the parameter may have side-effects. * * Intended for internal use. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param filter Same as `clut`, but for the filter to apply. * @param fmax Same as `max`, but for the filter to apply. * @param ftype Same as `type`, but for the filter to apply. (Not actually used). * @param channel The channel, must be either "red", "green", or "blue". */ #define libclut_apply__(clut, max, type, filter, fmax, ftype, channel) \ do \ { \ size_t i__, rn__ = (clut)->channel##_size - 1, fn__ = (filter)->channel##_size - 1; \ double x__, rm__ = (double)(max), m__ = (double)(max) / (double)(fmax); \ for (i__ = 0; i__ < rn__; i__++) \ { \ x__ = (double)((clut)->channel[i__]) / rm__ * (double)fn__; \ (clut)->channel[i__] = (type)((double)((filter)->channel[(size_t)x__]) * m__); \ } \ } \ while (0) /** * Applies a filter or calibration, using CIE xyY. * * None of the parameter may have side-effects. * * Requires linking with '-lclut'. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param filter Same as `clut`, but for the filter to apply. * @param fmax Same as `max`, but for the filter to apply. * @param ftype Same as `type`, but for the filter to apply. (Not actually used). * @param r Whether to apply the filter for the red curve. * @param g Whether to apply the filter for the green curve. * @param b Whether to apply the filter for the blue curve. */ #define libclut_cie_apply(clut, max, type, filter, fmax, ftype, r, g, b) \ do \ { \ size_t rfn__ = (filter)->red_size - 1, gfn__ = (filter)->green_size - 1; \ size_t bfn__ = (filter)->blue_size - 1, x__; \ size_t rm__ = (double)(max), fm__ = (double)(fmax); \ libclut_cie__(clut, max, type, 0, r, g, b, \ (x__ = (size_t)(Y__ / rm__ * rfn__), (double)((filter)->red[x__]) / fm__), \ (x__ = (size_t)(Y__ / rm__ * gfn__), (double)((filter)->green[x__]) / fm__), \ (x__ = (size_t)(Y__ / rm__ * bfn__), (double)((filter)->blue[x__]) / fm__)); \ } \ while (0) /** * Modify a ramp. * * None of the parameter may have side-effects. * * This is intended for internal use. * * @param clut Pointer to the gamma ramps, must have and array * named `channel` and a scalar named `channel` followed * by "_size". * @param channel The channel, must be either "red", "green", or "blue". * @param type The data type used for each stop in the ramps. * @param expr Expression that evalutes the value a stop should have. * It can use the variable `LIBCLUT_VALUE` to get the * current value of the stop. */ #define libclut__(clut, channel, type, expr) \ do \ { \ size_t i__, n__ = (clut)->channel##_size; \ type LIBCLUT_VALUE; \ for (i__ = 0; i__ < n__; i__++) \ { \ LIBCLUT_VALUE = (clut)->channel[i__]; \ (clut)->channel[i__] = (type)(expr); \ } \ } \ while (0) /** * Modify a ramp set in CIE xyY. * * None of the parameter may have side-effects. * * Requires linking with '-lclut'. * * This is intended for internal use. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param utest Whether all channels can be modified at the same time. * This test does not have to include the ramp size. * @param rtest Whether the red channel have to be modified. * @param gtest Whether the green channel have to be modified. * @param btest Whether the blue channel have to be modified. * @param rexpr Expression calculating the intensity of the red channel. * The current value is stored in `Y__`. * @param gexpr Expression calculating the intensity of the green channel. * The current value is stored in `Y__`. * @param bexpr Expression calculating the intensity of the blue channel. * The current value is stored in `Y__`. */ #define libclut_cie__(clut, max, type, utest, rtest, gtest, btest, rexpr, gexpr, bexpr) \ do \ { \ size_t rn__ = (clut)->red_size; \ size_t gn__ = (clut)->green_size; \ size_t bn__ = (clut)->blue_size; \ size_t i__; \ double x__, y__, Y__, r__, g__, b__; \ double m__ = (double)(max); \ type* rs__ = (clut)->red; \ type* gs__ = (clut)->green; \ type* bs__ = (clut)->blue; \ if ((rn__ == gn__) && (gn__ == bn__) && (utest)) \ { \ if (!(rtest)) \ break; \ for (i__ = 0; i__ < rn__; i__++) \ { \ libclut_model_srgb_to_ciexyy(rs__[i__] / m__, gs__[i__] / m__, \ bs__[i__] / m__, &x__, &y__, &Y__); \ libclut_model_ciexyy_to_srgb(x__, y__, rexpr, &r__, &g__, &b__); \ rs__[i__] = (type)(r__ * m__); \ gs__[i__] = (type)(g__ * m__); \ bs__[i__] = (type)(b__ * m__); \ } \ } \ else if ((rn__ == gn__) && (gn__ == bn__)) \ { \ if (!(rtest) && !(gtest) && !(btest)) \ break; \ for (i__ = 0; i__ < rn__; i__++) \ { \ libclut_model_srgb_to_ciexyy(rs__[i__] / m__, gs__[i__] / m__, \ bs__[i__] / m__, &x__, &y__, &Y__); \ if (rtest) \ { \ libclut_model_ciexyy_to_srgb(x__, y__, rexpr, &r__, &g__, &b__); \ rs__[i__] = (type)(r__ * m__); \ } \ if (gtest) \ { \ libclut_model_ciexyy_to_srgb(x__, y__, gexpr, &r__, &g__, &b__); \ gs__[i__] = (type)(g__ * m__); \ } \ if (btest) \ { \ libclut_model_ciexyy_to_srgb(x__, y__, nexpr, &r__, &g__, &b__); \ bs__[i__] = (type)(b__ * m__); \ } \ } \ } \ else \ { \ if (rtest) \ for (i__ = 0; i__ < rn__; i__++) \ libclut_cie___(clut, max, type, rexpr, i__, \ libclut_i__(i__, rn__, gn__), \ libclut_i__(i__, rn__, bn__)); \ if (gtest) \ for (i__ = 0; i__ < rn__; i__++) \ libclut_cie___(clut, max, type, gexpr, \ libclut_i__(i__, gn__, rn__), i__, \ libclut_i__(i__, gn__, bn__)); \ if (btest) \ for (i__ = 0; i__ < rn__; i__++) \ libclut_cie___(clut, max, type, bexpr, i__, \ libclut_i__(i__, bn__, rn__), \ libclut_i__(i__, bn__, gn__), i__); \ } \ } \ while (0) /** * Modify a ramp stop in CIE xyY. * * None of the parameter may have side-effects. * * Requires linking with '-lclut'. * * This is intended for internal use. * Assumes the existence of variables defined in `libclut_cie__`. * * @param clut Pointer to the gamma ramps, must have the arrays * `red`, `green`, and `blue`, and the scalars * `red_size`, `green_size`, and `blue_size`. Ramp * structures from libgamma can be used. * @param max The maximum value on each stop in the ramps. * @param type The data type used for each stop in the ramps. * @param c Either "r" for red, "g" for green, or "b" for blue. * @param expr Expression calculating the intensity of the channel. * @param ri The index of the stop translated to the red channel. * @param gi The index of the stop translated to the green channel. * @param bi The index of the stop translated to the blue channel. */ #define libclut_cie___(clut, max, type, c, expr, ri, gi, bi) \ do \ { \ for (i__ = 0; i__ < c##n__; i__++) \ { \ libclut_model_srgb_to_ciexyy(rs__[(ri)] / m__, gs__[(gi)] / m__, \ bs__[(bi)] / m__, &x__, &y__, &Y__); \ libclut_model_ciexyy_to_srgb(x__, y__, expr, &r__, &g__, &b__); \ c##s__[i__] = (type)(c##__ * m__); \ } \ } \ while (0) /** * Translate an index from one channel to another. * * @param i The index in the input channel. * @param in The size of the input channel. * @param out The size of the output channel. * @return The index in the output channel. */ #define libclut_i__(i, in, out) \ (size_t)((double)(i) * (double)(out) / (double)(in)) #if __GNUC__ #define LIBCLUT_GCC_ONLY__(x) x #else #define LIBCLUT_GCC_ONLY__(x) /* do nothing */ #endif /** * Convert one component from [0, 1] linear RGB to [0, 1] sRGB. * * If the macro variant is used, the argument must not have * any side-effects. The macro variant requires linking with * '-lm'. * * @param c The linear RGB value. * @return Corresponding sRGB value. */ LIBCLUT_GCC_ONLY__(__attribute__((__const__, __leaf__))) double (libclut_model_linear_to_standard1)(double); #define libclut_model_linear_to_standard1(c) \ (((double)(c) <= 0.0031308) ? (12.92 * (double)(c)) : ((1.055) * pow((double)(c), 1 / 2.4) - 0.055)) /** * Convert [0, 1] linear RGB to [0, 1] sRGB. * * The macro variant requires linking with '-lm', * if the 'libclut_model_linear_to_standard1' is defined, * otherwise it requires linking with '-lclut'. * * @param r Pointer to the linear red component, * and output parameter for the red component. * @param g Pointer to the linear green component, * and output parameter for the green component. * @param b Pointer to the linear blue component, * and output parameter for the blue component. */ void (libclut_model_linear_to_standard)(double*, double*, double*); #define libclut_model_linear_to_standard(r, g, b) \ do \ { \ double *r__ = (r), *g__ = (g), *b__ = (b); \ *r__ = libclut_model_linear_to_standard1(*r__); \ *g__ = libclut_model_linear_to_standard1(*g__); \ *b__ = libclut_model_linear_to_standard1(*b__); \ } \ while (0) /** * Convert one component from [0, 1] sRGB to [0, 1] linear RGB. * * If the macro variant is used, the argument must not have * any side-effects. The macro variant requires linking with * '-lm'. * * @param c The sRGB value. * @return Corresponding linear RGB value. */ LIBCLUT_GCC_ONLY__(__attribute__((__const__, __leaf__))) double (libclut_model_standard_to_linear1)(double); #define libclut_model_standard_to_linear1(c) \ (((double)(c) <= 0.04045) ? ((double)(c) / 12.92) : pow(((double)(c) + 0.055) / 1.055, 2.4)) /** * Convert [0, 1] sRGB to [0, 1] linear RGB. * * The macro variant requires linking with '-lm', * if the 'libclut_model_standard_to_linear1' is defined, * otherwise it requires linking with '-lclut'. * * @param r Pointer to the red component, and output * parameter for the linear red component. * @param g Pointer to the green component, and output * parameter for the linear green component. * @param b Pointer to the blue component, and output * parameter for the linear blue component. */ void (libclut_model_standard_to_linear)(double*, double*, double*); #define libclut_model_standard_to_linear(r, g, b) \ do \ { \ double *r__ = (r), *g__ = (g), *b__ = (b); \ *r__ = libclut_model_standard_to_linear1(*r__); \ *g__ = libclut_model_standard_to_linear1(*g__); \ *b__ = libclut_model_standard_to_linear1(*b__); \ } \ while (0) /** * Convert CIE xyY to CIE XYZ. * * @param x The x parameter. * @param y The y parameter. * @param Y The Y parameter. This is also the Y (middle) parameter for the CIE XYZ colour. * @param X Output parameter for the X parameter. * @param Z Output parameter for the Z parameter. */ LIBCLUT_GCC_ONLY__(__attribute__((__leaf__))) void (libclut_model_ciexyy_to_ciexyz)(double, double, double, double*, double*); #define libclut_model_ciexyy_to_ciexyz(x, y, Y, X, Z) \ do \ { \ double x__ = (x), y__ = (y), Y__ = (Y), *X__ = (X), *Z__ = (Z); \ *X__ = libclut_0__(y__) ? Y__ : (Y__ * x__ / y__); \ *Z__ = libclut_0__(y__) ? Y__ : (Y__ * (1 - x__ - y__) / y__); \ } \ while (0) /** * Convert CIE XYZ to CIE xyY. * * @param X The X parameter. * @param Y The Y parameter. This is also the Y (last) parameter for the CIE xyY colour. * @param Z The Z parameter. * @param x Output parameter for the x parameter. * @param y Output parameter for the y parameter. */ LIBCLUT_GCC_ONLY__(__attribute__((__leaf__))) void (libclut_model_ciexyz_to_ciexyy)(double, double, double, double*, double*); #define libclut_model_ciexyz_to_ciexyy(X, Y, Z, x, y) \ do \ { \ double X__ = (X), Y__ = (Y), Z__ = (Z), *x__ = (x), *y__ = (y); \ double s__ = X__ + Y__ + Z__; \ if (libclut_0__(s__)) \ *x__ = *y__ = 0; \ else \ *x__ = X__ / s__, *y__ = Y__ / s__; \ } \ while (0) /** * Convert CIE XYZ to [0, 1] linear RGB. * * @param X The X parameter. * @param Y The Y parameter. * @param Z The Z parameter. * @param r Output parameter for the red component. * @param g Output parameter for the green component. * @param b Output parameter for the blue component. */ LIBCLUT_GCC_ONLY__(__attribute__((__leaf__))) void (libclut_model_ciexyz_to_linear)(double, double, double, double*, double*, double*); #define libclut_model_ciexyz_to_linear(X, Y, Z, r, g, b) \ do \ { \ double X__ = (X), Y__ = (Y), Z__ = (Z); \ *(r) = ( 3.2404500 * X__) + (-1.537140 * Y__) + (-0.4985320 * Z__); \ *(g) = (-0.9692660 * X__) + ( 1.876010 * Y__) + ( 0.0415561 * Z__); \ *(b) = ( 0.0556434 * X__) + (-0.204026 * Y__) + ( 1.0572300 * Z__); \ } \ while (0) /** * Convert [0, 1] linear RGB to CIE XYZ. * * @param r The red component. * @param g The green component. * @param b The blue component. * @param X Output parameter for the X parameter. * @param Y Output parameter for the Y parameter. * @param Z Output parameter for the Z parameter. */ LIBCLUT_GCC_ONLY__(__attribute__((__leaf__))) void (libclut_model_linear_to_ciexyz)(double, double, double, double*, double*, double*); #define libclut_model_linear_to_ciexyz(r, g, b, X, Y, Z) \ do \ { \ double r__ = (r), g__ = (g), b__ = (b); \ *(X) = (0.4124564 * r__) + (0.3575761 * g__) + (0.1804375 * b__); \ *(Y) = (0.2126729 * r__) + (0.7151522 * g__) + (0.0721750 * b__); \ *(Z) = (0.0193339 * r__) + (0.1191920 * g__) + (0.9503041 * b__); \ } \ while (0) /** * Convert [0, 1] linear RGB to CIE xyY. * * The macro variant requires linking with '-lclut' * if any of `libclut_model_ciexyz_to_ciexyy`, * `libclut_model_linear_to_ciexyz`, and * `libclut_model_standard_to_linear` are undefined. * The macro variant requires linking with '-lm' if * neither `libclut_model_standard_to_linear` nor * `libclut_model_standard_to_linear1` are undefined. * * @param r The red component. * @param g The green component. * @param b The blue component. * @param x Output parameter for the x parameter. * @param y Output parameter for the y parameter. * @param Y Output parameter for the Y parameter. */ void (libclut_model_srgb_to_ciexyy)(double, double, double, double*, double*, double*); #define libclut_model_srgb_to_ciexyy(r, g, b, x, y, Y) \ do \ { \ double r___ = (r), g___ = (g), b___ = (b); \ double *x___ = (x), *y___ = (y), *Y___ = (Y); \ double X___, Z___; \ libclut_model_standard_to_linear(&r___, &g___, &b___); \ libclut_model_linear_to_ciexyz(r___, g___, b___, &X___, Y___, &Z___); \ libclut_model_ciexyz_to_ciexyy(X___, *Y___, Z___, x___, y___); \ } \ while (0) /** * Convert CIE xyY to [0, 1] sRGB. * * The macro variant requires linking with '-lclut' * if any of `libclut_model_ciexyy_to_ciexyz`, * `libclut_model_ciexyz_to_linear`, and * `libclut_model_linear_to_standard` are undefined. * The macro variant requires linking with '-lm' if * neither `libclut_model_linear_to_standard` nor * `libclut_model_linear_to_standard1` are undefined. * * @param x The x parameter. * @param y The y parameter. * @param Y The Y parameter. * @param r Output parameter for the red component. * @param g Output parameter for the green component. * @param b Output parameter for the blue component. */ void (libclut_model_ciexyy_to_srgb)(double, double, double, double*, double*, double*); #define libclut_model_ciexyy_to_srgb(x, y, Y, r, g, b) \ do \ { \ double x___ = (x), y___ = (y), Y___ = (Y); \ double *r___ = (r), *g___ = (g), *b___ = (b); \ double X___, Z___; \ libclut_model_ciexyy_to_ciexyz(x___, y___, Y___, &X___, &Z___); \ libclut_model_ciexyz_to_linear(X___, Y___, Z___, r___, g___, b___); \ libclut_model_linear_to_standard(r___, g___, b___); \ } \ while(0) /** * Convert from CIE XYZ to CIE L*a*b*. * * The macro variant requires linking with '-lm'. * * @param X The X parameter. * @param Y The Y parameter. * @param Z The Z parameter. * @param L Output parameter for the L* component. * @param a Output parameter for the a* component. * @param b Output parameter for the b* component. */ LIBCLUT_GCC_ONLY__(__attribute__((__leaf__))) void (libclut_model_ciexyz_to_cielab)(double, double, double, double*, double*, double*); #define libclut_model_ciexyz_to_cielab(X, Y, Z, L, a, b) \ do \ { \ double X__ = (X), Y__ = (Y), Z__ = (Z); \ X__ /= 0.95047, Z__ /= 1.08883; \ X__ = LIBCLUT_MODEL_CIEXYZ_TO_CIELAB__(X__); \ Y__ = LIBCLUT_MODEL_CIEXYZ_TO_CIELAB__(Y__); \ Z__ = LIBCLUT_MODEL_CIEXYZ_TO_CIELAB__(Z__); \ *(L) = 116 * Y__ - 16; \ *(a) = 500 * (X__ - Y__); \ *(b) = 200 * (Y__ - Z__); \ } \ while (0) #define LIBCLUT_MODEL_CIEXYZ_TO_CIELAB__(C) \ (((C) > 0.00885642) ? pow((C), 1.0 / 3) : ((7.78 + 703.0 / 99900) * (C) + 0.1379310)) /** * Convert from CIE L*a*b* to CIE XYZ. * * @param L The L* component. * @param a The a* component. * @param b The b* component. * @param X Output parameter for the X parameter. * @param Y Output parameter for the Y parameter. * @param Z Output parameter for the Z parameter. */ LIBCLUT_GCC_ONLY__(__attribute__((__leaf__))) void (libclut_model_cielab_to_ciexyz)(double, double, double, double*, double*, double*); #define libclut_model_cielab_to_ciexyz(L, a, b, X, Y, Z) \ do \ { \ double L__ = (L), a__ = (a), b__ = (b); \ double *X__ = (X), *Y__ = (Y), *Z__ = (Z); \ *Y__ = (L__ + 16) / 116; \ *X__ = a__ / 500 + *Y__; \ *Z__ = *Y__ - b__ / 200; \ *X__ = LIBCLUT_MODEL_CIELAB_TO_CIEXYZ__(*X__) * 0.95047; \ *Y__ = LIBCLUT_MODEL_CIELAB_TO_CIEXYZ__(*Y__); \ *Z__ = LIBCLUT_MODEL_CIELAB_TO_CIEXYZ__(*Z__) * 1.08883; \ } \ while (0) #define LIBCLUT_MODEL_CIELAB_TO_CIEXYZ__(C) \ (((C)*(C)*(C) > 0.00885642) ? ((C)*(C)*(C)) : (((C) - 0.1379310) / (7.78 + 703.0 / 99900))) #endif