/**
* Copyright © 2016 Mattias Andrée <maandree@member.fsf.org>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef LIBCLUT_H
#define LIBCLUT_H
#include <stddef.h>
#include <string.h>
#include <math.h>
/* Not documented, may be removed or modified in the future. */
#define LIBCLUT_ILLUMINANT_A .white_x = 0.44757, .white_y = 0.40745, .white_Y = 1
#define LIBCLUT_ILLUMINANT_B .white_x = 0.34842, .white_y = 0.35161, .white_Y = 1
#define LIBCLUT_ILLUMINANT_C .white_x = 0.31006, .white_y = 0.31616, .white_Y = 1
#define LIBCLUT_ILLUMINANT_D50 .white_x = 0.34567, .white_y = 0.35850, .white_Y = 1
#define LIBCLUT_ILLUMINANT_D55 .white_x = 0.33242, .white_y = 0.34743, .white_Y = 1
#define LIBCLUT_ILLUMINANT_D65 .white_x = 0.31271, .white_y = 0.32902, .white_Y = 1
#define LIBCLUT_ILLUMINANT_D75 .white_x = 0.29902, .white_y = 0.31485, .white_Y = 1
#define LIBCLUT_ILLUMINANT_E .white_x = 1. / 3, .white_y = 1. / 3, .white_Y = 1
#define LIBCLUT_ILLUMINANT_F1 .white_x = 0.31310, .white_y = 0.33727, .white_Y = 1
#define LIBCLUT_ILLUMINANT_F2 .white_x = 0.37208, .white_y = 0.37529, .white_Y = 1
#define LIBCLUT_ILLUMINANT_F3 .white_x = 0.40910, .white_y = 0.39430, .white_Y = 1
#define LIBCLUT_ILLUMINANT_F4 .white_x = 0.44018, .white_y = 0.40329, .white_Y = 1
#define LIBCLUT_ILLUMINANT_F5 .white_x = 0.31379, .white_y = 0.34531, .white_Y = 1
#define LIBCLUT_ILLUMINANT_F6 .white_x = 0.37790, .white_y = 0.38835, .white_Y = 1
#define LIBCLUT_ILLUMINANT_F7 .white_x = 0.31292, .white_y = 0.32933, .white_Y = 1
#define LIBCLUT_ILLUMINANT_F8 .white_x = 0.34588, .white_y = 0.35875, .white_Y = 1
#define LIBCLUT_ILLUMINANT_F9 .white_x = 0.37417, .white_y = 0.37281, .white_Y = 1
#define LIBCLUT_ILLUMINANT_F10 .white_x = 0.34609, .white_y = 0.35986, .white_Y = 1
#define LIBCLUT_ILLUMINANT_F11 .white_x = 0.38052, .white_y = 0.37713, .white_Y = 1
#define LIBCLUT_ILLUMINANT_F12 .white_x = 0.43695, .white_y = 0.40441, .white_Y = 1
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the sRGB colour space.
*
* sRGB does not use a regular gamma function, but rather two different
* functions. `libclut_model_linear_to_standard1` and
* and `libclut_model_standard_to_linear1` can be used so to convert
* between sRGB and linear sRGB.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_SRGB_INITIALISER \
{ \
.red_x = 0.6400, .red_y = 0.3300, .red_Y = 0.212656, \
.green_x = 0.3000, .green_y = 0.6000, .green_Y = 0.715158, \
.blue_x = 0.1500, .blue_y = 0.0600, .blue_Y = 0.072186, \
LIBCLUT_ILLUMINANT_D65 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the Adobe RGB (1998) colour space.
*
* This gamma colour space's gamma is 2.2. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_ADOBE_RGB_INITIALISER \
{ \
.red_x = 0.6400, .red_y = 0.3300, .red_Y = 0.297361, \
.green_x = 0.2100, .green_y = 0.7100, .green_Y = 0.627355, \
.blue_x = 0.1500, .blue_y = 0.0600, .blue_Y = 0.075285, \
LIBCLUT_ILLUMINANT_D65 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the Apple RGB colour space.
*
* This gamma colour space's gamma is 1.8. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_APPLE_RGB_INITIALISER \
{ \
.red_x = 0.6250, .red_y = 0.3400, .red_Y = 0.244634, \
.green_x = 0.2800, .green_y = 0.5950, .green_Y = 0.672034, \
.blue_x = 0.1550, .blue_y = 0.0700, .blue_Y = 0.083332, \
LIBCLUT_ILLUMINANT_D65 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the Best RGB colour space.
*
* This gamma colour space's gamma is 2.2. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_BEST_RGB_INITIALISER \
{ \
.red_x = 0.7347, .red_y = 0.2653, .red_Y = 0.228457, \
.green_x = 0.2150, .green_y = 0.7750, .green_Y = 0.737352, \
.blue_x = 0.1300, .blue_y = 0.0350, .blue_Y = 0.034191, \
LIBCLUT_ILLUMINANT_D50 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the Beta RGB colour space.
*
* This gamma colour space's gamma is 2.2. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_BETA_RGB_INITIALISER \
{ \
.red_x = 0.6888, .red_y = 0.3112, .red_Y = 0.303273, \
.green_x = 0.1986, .green_y = 0.7551, .green_Y = 0.663786, \
.blue_x = 0.1265, .blue_y = 0.0352, .blue_Y = 0.032941, \
LIBCLUT_ILLUMINANT_D50 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the Bruce RGB colour space.
*
* This gamma colour space's gamma is 2.2. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_BRUCE_RGB_INITIALISER \
{ \
.red_x = 0.6400, .red_y = 0.3300, .red_Y = 0.240995, \
.green_x = 0.2800, .green_y = 0.6500, .green_Y = 0.683554, \
.blue_x = 0.1500, .blue_y = 0.0600, .blue_Y = 0.075452, \
LIBCLUT_ILLUMINANT_D65 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the CIE RGB colour space.
*
* This gamma colour space's gamma is 2.2. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_CIE_RGB_INITIALISER \
{ \
.red_x = 0.7350, .red_y = 0.2650, .red_Y = 0.176204, \
.green_x = 0.2740, .green_y = 0.7170, .green_Y = 0.812985, \
.blue_x = 0.1670, .blue_y = 0.0090, .blue_Y = 0.010811, \
LIBCLUT_ILLUMINANT_E \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the ColorMatch RGB colour space.
*
* This gamma colour space's gamma is 1.8. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_COLORMATCH_RGB_INITIALISER \
{ \
.red_x = 0.6300, .red_y = 0.3400, .red_Y = 0.274884, \
.green_x = 0.2950, .green_y = 0.6050, .green_Y = 0.658132, \
.blue_x = 0.1500, .blue_y = 0.0750, .blue_Y = 0.066985, \
LIBCLUT_ILLUMINANT_D50 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the Don RGB 4 colour space.
*
* This gamma colour space's gamma is 2.2. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_DON_RGB_4_INITIALISER \
{ \
.red_x = 0.6960, .red_y = 0.3000, .red_Y = 0.278350, \
.green_x = 0.2150, .green_y = 0.7650, .green_Y = 0.687970, \
.blue_x = 0.1300, .blue_y = 0.0350, .blue_Y = 0.033680, \
LIBCLUT_ILLUMINANT_D50 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the ECI RGB v2 colour space.
*
* This gamma colour space's used the L* gamma function. It cannot
* be used with RGB colour space conversion unless the values are
* tranlated into using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_ECI_RGB_V2_INITIALISER \
{ \
.red_x = 0.6700, .red_y = 0.3300, .red_Y = 0.320250, \
.green_x = 0.2100, .green_y = 0.7100, .green_Y = 0.602071, \
.blue_x = 0.1400, .blue_y = 0.0800, .blue_Y = 0.077679, \
LIBCLUT_ILLUMINANT_D50 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the Ekta Space PS5 colour space.
*
* This gamma colour space's gamma is 2.2. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_EKTA_SPACE_PS5_INITIALISER \
{ \
.red_x = 0.6950, .red_y = 0.3050, .red_Y = 0.260629, \
.green_x = 0.2600, .green_y = 0.7000, .green_Y = 0.734946, \
.blue_x = 0.1100, .blue_y = 0.0050, .blue_Y = 0.004425, \
LIBCLUT_ILLUMINANT_D50 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the ITU-R Recommendation BT.709 (ITU-R BT.709) colour space.
*
* This gamma colour space's gamma is 2.4. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_ITU_R_BT_709_INITIALISER \
{ \
.red_x = 0.6400, .red_y = 0.3300, .red_Y = 0.212656, \
.green_x = 0.3000, .green_y = 0.6000, .green_Y = 0.715158, \
.blue_x = 0.1500, .blue_y = 0.0600, .blue_Y = 0.072186, \
LIBCLUT_ILLUMINANT_D65 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the Lightroom RGB colour space.
*
* This gamma colour space's gamma is 1.0. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_LIGHTROOM_RGB_INITIALISER \
{ \
.red_x = 0.7347, .red_y = 0.2653, .red_Y = 0.288040, \
.green_x = 0.1596, .green_y = 0.8404, .green_Y = 0.711874, \
.blue_x = 0.0366, .blue_y = 0.0001, .blue_Y = 0.000086, \
LIBCLUT_ILLUMINANT_D50 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the NTSC RGB colour space.
*
* This gamma colour space's gamma is 2.2. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_NTSC_RGB_INITIALISER \
{ \
.red_x = 0.6700, .red_y = 0.3300, .red_Y = 0.298839, \
.green_x = 0.2100, .green_y = 0.7100, .green_Y = 0.586811, \
.blue_x = 0.1400, .blue_y = 0.0800, .blue_Y = 0.114350, \
LIBCLUT_ILLUMINANT_C \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the PAL/SECAM RGB colour space.
*
* This gamma colour space's gamma is 2.2. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_PAL_SECAM_RGB_INITIALISER \
{ \
.red_x = 0.6400, .red_y = 0.3300, .red_Y = 0.222021, \
.green_x = 0.2900, .green_y = 0.6000, .green_Y = 0.706645, \
.blue_x = 0.1500, .blue_y = 0.0600, .blue_Y = 0.071334, \
LIBCLUT_ILLUMINANT_D65 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the ProPhoto RGB colour space.
*
* This gamma colour space's gamma is 1.8. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_PROPHOTO_RGB_INITIALISER \
{ \
.red_x = 0.7347, .red_y = 0.2653, .red_Y = 0.288040, \
.green_x = 0.1596, .green_y = 0.8404, .green_Y = 0.711874, \
.blue_x = 0.0366, .blue_y = 0.0001, .blue_Y = 0.000086, \
LIBCLUT_ILLUMINANT_D50 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the SMPTE-C RGB colour space.
*
* This gamma colour space's gamma is 2.2. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_SMPTE_C_RGB_INITIALISER \
{ \
.red_x = 0.6300, .red_y = 0.3400, .red_Y = 0.212395, \
.green_x = 0.3100, .green_y = 0.5950, .green_Y = 0.701049, \
.blue_x = 0.1550, .blue_y = 0.0700, .blue_Y = 0.086556, \
LIBCLUT_ILLUMINANT_D65 \
}
/**
* Initialiser for `struct libclut_rgb_colour_space` with the values
* of the Wide Gamut RGB colour space.
*
* This gamma colour space's gamma is 2.2. It cannot be used with
* RGB colour space conversion unless the values are tranlated into
* using the sRGB gamma function.
*/
#define LIBCLUT_RGB_COLOUR_SPACE_WIDE_GAMUT_RGB_INITIALISER \
{ \
.red_x = 0.7350, .red_y = 0.2650, .red_Y = 0.258187, \
.green_x = 0.1150, .green_y = 0.8260, .green_Y = 0.724938, \
.blue_x = 0.1570, .blue_y = 0.0180, .blue_Y = 0.016875, \
LIBCLUT_ILLUMINANT_D50 \
}
/*
* name gamma xw yw xr yr xg yg xb yb
* ITU-R Recommendation BT.2020 (ITU-R BT.2020) *1 { D65 } 0.708 0.292 0.170 0.797 0.131 0.046
* ITU-R Recommendation BT.2100 (ITU-R BT.2100) *2 { D65 } 0.708 0.292 0.170 0.797 0.131 0.046
* DCI-P3 D65 ? { D65 } 0.680 0.320 0.265 0.690 0.150 0.060
* DCI-P3 Theater ? 0.314 0.351 0.680 0.320 0.265 0.690 0.150 0.060
* https://en.wikipedia.org/wiki/Rec._601
*
* *1 https://en.wikipedia.org/wiki/Rec._2020#Transfer_characteristics
* *2 http://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-BT.2100-0-201607-I!!PDF-E.pdf
*/
/**
* RGB colour space structure.
*/
typedef struct libclut_rgb_colour_space
{
/**
* The x-component of the red colour's xyY value.
*/
double red_x;
/**
* The y-component of the red colour's xyY value.
*/
double red_y;
/**
* The Y-component of the red colour's xyY value.
*/
double red_Y;
/**
* The x-component of the green colour's xyY value.
*/
double green_x;
/**
* The y-component of the green colour's xyY value.
*/
double green_y;
/**
* The Y-component of the green colour's xyY value.
*/
double green_Y;
/**
* The x-component of the blue colour's xyY value.
*/
double blue_x;
/**
* The y-component of the blue colour's xyY value.
*/
double blue_y;
/**
* The Y-component of the blue colour's xyY value.
*/
double blue_Y;
/**
* The x-component of the white point's xyY value.
*/
double white_x;
/**
* The y-component of the white point's xyY value.
*/
double white_y;
/**
* The Y-component of the white point's xyY value.
*/
double white_Y;
} libclut_rgb_colour_space_t;
/**
* Matrix date-type for colour space conversion.
*/
typedef double libclut_colour_space_conversion_matrix_t[3][3];
/* This is to avoid warnings about comparing double, These are only
* used when it is safe, for example to test whether optimisations
* are possible. { */
#if defined(__GNUC__) || defined(__clang__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
static inline int libclut_eq__(double a, double b) { return a == b; }
static inline int libclut_1__(double x) { return libclut_eq__(x, 1); }
static inline int libclut_0__(double x) { return libclut_eq__(x, 0); }
#if defined(__GNUC__) || defined(__clang__)
# pragma GCC diagnostic pop
#endif
/* } */
#if defined(__clang__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdocumentation"
#endif
/**
* Apply contrast correction on the colour curves using sRGB.
*
* In this context, contrast is a measure of difference between
* the whitepoint and blackpoint, if the difference is 0 than
* they are both grey.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The contrast parameter for the red curve.
* @param g The contrast parameter for the green curve.
* @param b The contrast parameter for the blue curve.
*/
#define libclut_rgb_contrast(clut, max, type, r, g, b) \
do \
{ \
const double h__ = (double)5 / 10; \
if (!libclut_1__(r)) \
libclut__(clut, red, type, (LIBCLUT_VALUE - (max) * h__) * (r) + (max) * h__); \
if (!libclut_1__(g)) \
libclut__(clut, green, type, (LIBCLUT_VALUE - (max) * h__) * (g) + (max) * h__); \
if (!libclut_1__(b)) \
libclut__(clut, blue, type, (LIBCLUT_VALUE - (max) * h__) * (b) + (max) * h__); \
} \
while (0)
/**
* Apply contrast correction on the colour curves using CIE xyY.
*
* In this context, contrast is a measure of difference between
* the whitepoint and blackpoint, if the difference is 0 than
* they are both grey.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The contrast parameter for the red curve.
* @param g The contrast parameter for the green curve.
* @param b The contrast parameter for the blue curve.
*/
#define libclut_cie_contrast(clut, max, type, r, g, b) \
do \
{ \
const double h__ = (double)5 / 10; \
libclut_cie__(clut, max, type, libclut_eq__((r), (g)) && libclut_eq__((g), (b)), \
!libclut_1__(r), !libclut_1__(g), !libclut_1__(b), \
(Y__ - h__) * (r) + h__, (Y__ - h__) * (g) + h__, (Y__ - h__) * (b) + h__); \
} \
while (0)
/**
* Apply brightness correction on the colour curves using sRGB.
*
* In this context, brightness is a measure of the whiteness of the whitepoint.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The brightness parameter for the red curve.
* @param g The brightness parameter for the green curve.
* @param b The brightness parameter for the blue curve.
*/
#define libclut_rgb_brightness(clut, max, type, r, g, b) \
do \
{ \
if (!libclut_1__(r)) libclut__(clut, red, type, LIBCLUT_VALUE * (r)); \
if (!libclut_1__(g)) libclut__(clut, green, type, LIBCLUT_VALUE * (g)); \
if (!libclut_1__(b)) libclut__(clut, blue, type, LIBCLUT_VALUE * (b)); \
} \
while (0)
/**
* Apply brightness correction on the colour curves using CIE xyY.
*
* In this context, brightness is a measure of the whiteness of the whitepoint.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The brightness parameter for the red curve.
* @param g The brightness parameter for the green curve.
* @param b The brightness parameter for the blue curve.
*/
#define libclut_cie_brightness(clut, max, type, r, g, b) \
libclut_cie__(clut, max, type, libclut_eq__((r), (g)) && libclut_eq__((g), (b)), \
!libclut_1__(r), !libclut_1__(g), !libclut_1__(b), \
Y__ * (r), Y__ * (g), Y__ * (b))
/**
* Convert the curves from formatted in standard RGB to linear sRGB.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_standard_to_linear1` is not undefined.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to convert the red colour curve.
* @param g Whether to convert the green colour curve.
* @param b Whether to convert the blue colour curve.
*/
#define libclut_linearise(clut, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (r) \
libclut__(clut, red, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \
if (g) \
libclut__(clut, green, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \
if (b) \
libclut__(clut, blue, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \
} \
while (0)
/**
* Convert the curves from formatted in linear sRGB to standard RGB.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_linear_to_standard1` is not undefined.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to convert the red colour curve.
* @param g Whether to convert the green colour curve.
* @param b Whether to convert the blue colour curve.
*/
#define libclut_standardise(clut, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (r) \
libclut__(clut, red, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \
if (g) \
libclut__(clut, green, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \
if (b) \
libclut__(clut, blue, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \
} \
while (0)
/**
* Convert the curves between two RGB colour spaces.
*
* Both RGB colour spaces must have same gamma functions as sRGB.
*
* Requires that `clut->red_size`, `clut->green_size`
* and `clut->blue_size` are equal.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_linear_to_standard1`,
* `libclut_model_standard_to_linear1`, or
* `libclut_model_convert_rgb` is not undefined.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param m Conversion matrix. Can be created with
* `libclut_model_get_rgb_conversion_matrix`.
* @param trunc Truncate values that are out of gamut.
*/
#define libclut_convert_rgb_inplace(clut, max, type, m, trunc) \
do \
{ \
double m__ = (double)(max), r__, g__, b__; \
size_t i__, n__ = (clut)->red_size; \
for (i__ = 0; i__ < n__; i__++) \
{ \
r__ = (clut)->red[i__] / m__; \
g__ = (clut)->green[i__] / m__; \
b__ = (clut)->blue[i__] / m__; \
libclut_model_convert_rgb(r__, g__, b__, m, &r__, &g__, &b__); \
r__ *= m__; \
g__ *= m__; \
b__ *= m__; \
if (trunc) \
{ \
if (r__ < 0) \
r__ = 0; \
else if (r__ > m__) \
r__ = m__; \
if (g__ < 0) \
g__ = 0; \
else if (g__ > m__) \
g__ = m__; \
if (b__ < 0) \
b__ = 0; \
else if (b__ > m__) \
b__ = m__; \
} \
(clut)->red[i__] = (type)r__; \
(clut)->green[i__] = (type)g__; \
(clut)->blue[i__] = (type)b__; \
} \
} \
while (0)
/**
* Convert the curves between two RGB colour spaces.
*
* Both RGB colour spaces must have same gamma functions as sRGB.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut' if
* `libclut_model_linear_to_standard1`,
* `libclut_model_standard_to_linear1`, or
* `libclut_model_convert_rgb` is not undefined.
* Always requires linking with '-lm'.
*
* @param clut Pointer to the input gamma ramps, must have the
* arrays `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param m Conversion matrix. Can be created with
* `libclut_model_get_rgb_conversion_matrix`.
* @param trunc Truncate values that are out of gamut.
* @param out Pointer to the output gamma ramps, must have the
* arrays `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
*/
#define libclut_convert_rgb(clut, max, type, m, trunc, out) \
do \
{ \
double m__ = (double)(max), r__, g__, b__, x__, y__; \
size_t rn__ = (clut)->red_size; \
size_t gn__ = (clut)->green_size; \
size_t bn__ = (clut)->blue_size; \
double w__; \
size_t i__, j__, jj__; \
for (i__ = 0; i__ < rn__; i__++) \
{ \
w__ = (double)i__ * gn__ / rn__; \
j__ = (size_t)w__; \
jj__ = j__ == gn__ ? j__ : (j__ + 1); \
w__ = fmod(j__, (double)1); \
x__ = (clut)->green[j__] / m__; \
y__ = (clut)->green[jj__] / m__; \
x__ = libclut_model_standard_to_linear1(x__); \
y__ = libclut_model_standard_to_linear1(y__); \
g__ = x__ * (1 - w__) + y__ * w__; \
\
w__ = (double)i__ * bn__ / rn__; \
j__ = (size_t)w__; \
jj__ = j__ == bn__ ? j__ : (j__ + 1); \
w__ = fmod(j__, (double)1); \
x__ = (clut)->blue[j__] / m__; \
y__ = (clut)->blue[jj__] / m__; \
x__ = libclut_model_standard_to_linear1(x__); \
y__ = libclut_model_standard_to_linear1(y__); \
b__ = x__ * (1 - w__) + y__ * w__; \
\
r__ = (M)[0][0] * r__ + (M)[0][1] * g__ + (M)[0][2] * b__; \
r__ = libclut_model_linear_to_standard1(r__); \
r__ *= m__; \
if (trunc) \
{ \
if (r__ < 0) \
r__ = 0; \
else if (r__ > m__) \
r__ = m__; \
} \
(out)->red[i__] = (type)r__; \
} \
for (i__ = 0; i__ < gn__; i__++) \
{ \
w__ = (double)i__ * rn__ / gn__; \
j__ = (size_t)w__; \
jj__ = j__ == rn__ ? j__ : (j__ + 1); \
w__ = fmod(j__, (double)1); \
x__ = (clut)->red[j__] / m__; \
y__ = (clut)->red[jj__] / m__; \
x__ = libclut_model_standard_to_linear1(x__); \
y__ = libclut_model_standard_to_linear1(y__); \
r__ = x__ * (1 - w__) + y__ * w__; \
\
w__ = (double)i__ * bn__ / gn__; \
j__ = (size_t)w__; \
jj__ = j__ == bn__ ? j__ : (j__ + 1); \
w__ = fmod(j__, (double)1); \
x__ = (clut)->blue[j__] / m__; \
y__ = (clut)->blue[jj__] / m__; \
x__ = libclut_model_standard_to_linear1(x__); \
y__ = libclut_model_standard_to_linear1(y__); \
b__ = x__ * (1 - w__) + y__ * w__; \
\
g__ = (M)[1][0] * r__ + (M)[0][1] * g__ + (M)[1][2] * b__; \
g__ = libclut_model_linear_to_standard1(g__); \
g__ *= m__; \
if (trunc) \
{ \
if (g__ < 0) \
g__ = 0; \
else if (g__ > m__) \
g__ = m__; \
} \
(out)->green[i__] = (type)g__; \
} \
for (i__ = 0; i__ < bn__; i__++) \
{ \
w__ = (double)i__ * rn__ / bn__; \
j__ = (size_t)w__; \
jj__ = j__ == rn__ ? j__ : (j__ + 1); \
w__ = fmod(j__, (double)1); \
x__ = (clut)->red[j__] / m__; \
y__ = (clut)->red[jj__] / m__; \
x__ = libclut_model_standard_to_linear1(x__); \
y__ = libclut_model_standard_to_linear1(y__); \
r__ = x__ * (1 - w__) + y__ * w__; \
\
w__ = (double)i__ * gn__ / bn__; \
j__ = (size_t)w__; \
jj__ = j__ == gn__ ? j__ : (j__ + 1); \
w__ = fmod(j__, (double)1); \
x__ = (clut)->green[j__] / m__; \
y__ = (clut)->green[jj__] / m__; \
x__ = libclut_model_standard_to_linear1(x__); \
y__ = libclut_model_standard_to_linear1(y__); \
g__ = x__ * (1 - w__) + y__ * w__; \
\
b__ = (M)[2][0] * r__ + (M)[2][1] * g__ + (M)[2][2] * b__; \
b__ = libclut_model_linear_to_standard1(b__); \
b__ *= m__; \
if (trunc) \
{ \
if (b__ < 0) \
b__ = 0; \
else if (b__ > m__) \
b__ = m__; \
} \
(out)->blue[i__] = (type)b__; \
} \
} \
while (0)
/**
* Apply gamma correction on the colour curves.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lm'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The gamma parameter the red colour curve.
* @param g The gamma parameter the green colour curve.
* @param b The gamma parameter the blue colour curve.
*/
#define libclut_gamma(clut, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (!libclut_1__(r)) \
libclut__(clut, red, type, m__ * pow(LIBCLUT_VALUE / m__, 1 / (double)(r))); \
if (!libclut_1__(g)) \
libclut__(clut, green, type, m__ * pow(LIBCLUT_VALUE / m__, 1 / (double)(g))); \
if (!libclut_1__(b)) \
libclut__(clut, blue, type, m__ * pow(LIBCLUT_VALUE / m__, 1 / (double)(b))); \
} \
while (0)
/**
* Reverse the colour curves (negative image with gamma preservation.)
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* This parameter is not used, it is just a dummy, to unify
* the API with the other functions.
* @param type The data type used for each stop in the ramps.
* @param r Whether to invert the red colour curve.
* @param g Whether to invert the green colour curve.
* @param b Whether to invert the blue colour curve.
*/
#define libclut_negative(clut, max, type, r, g, b) \
do \
{ \
size_t i__, n__; \
type t__; \
if (r) \
for (i__ = 0, n__ = (clut)->red_size; i__ < (n__ >> 1); i__++) \
{ \
t__ = (clut)->red[i__]; \
(clut)->red[i__] = (clut)->red[n__ - i__ - 1]; \
(clut)->red[n__ - i__ - 1] = t__; \
} \
if (g) \
for (i__ = 0, n__ = (clut)->green_size; i__ < (n__ >> 1); i__++) \
{ \
t__ = (clut)->green[i__]; \
(clut)->green[i__] = (clut)->green[n__ - i__ - 1]; \
(clut)->green[n__ - i__ - 1] = t__; \
} \
if (b) \
for (i__ = 0, n__ = (clut)->blue_size; i__ < (n__ >> 1); i__++) \
{ \
t__ = (clut)->blue[i__]; \
(clut)->blue[i__] = (clut)->blue[n__ - i__ - 1]; \
(clut)->blue[n__ - i__ - 1] = t__; \
} \
} \
while (0)
/**
* Invert the colour curves (negative image with gamma invertion), using sRGB.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to invert the red colour curve.
* @param g Whether to invert the green colour curve.
* @param b Whether to invert the blue colour curve.
*/
#define libclut_rgb_invert(clut, max, type, r, g, b) \
do \
{ \
if (r) libclut__(clut, red, type, (max) - LIBCLUT_VALUE); \
if (g) libclut__(clut, green, type, (max) - LIBCLUT_VALUE); \
if (b) libclut__(clut, blue, type, (max) - LIBCLUT_VALUE); \
} \
while (0)
/**
* Invert the colour curves (negative image with gamma invertion), using CIE xyY.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to invert the red colour curve.
* @param g Whether to invert the green colour curve.
* @param b Whether to invert the blue colour curve.
*/
#define libclut_cie_invert(clut, max, type, r, g, b) \
libclut_cie__(clut, max, type, (r) && (g) && (b), r, g, b, 1 - Y__, 1 - Y__, 1 - Y__)
/**
* Apply S-curve correction on the colour curves.
* This is intended for fine tuning LCD monitors,
* 4.5 is good value start start testing at.
* You would probably like to use rgb_limits before
* this to adjust the blackpoint as that is the
* only way to adjust the blackpoint on many LCD
* monitors.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lm'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rp Pointer to the sigmoid parameter for the red curve. `NULL` for no adjustment.
* @param gp Pointer to the sigmoid parameter for the green curve. `NULL` for no adjustment.
* @param bp Pointer to the sigmoid parameter for the blue curve. `NULL` for no adjustment.
*/
#define libclut_sigmoid(clut, max, type, rp, gp, bp) \
do \
{ \
double *gcc_6_1_1_workaround, m__ = (double)(max); \
const double h__ = (double)5 / 10; \
gcc_6_1_1_workaround = rp; \
if (gcc_6_1_1_workaround) \
libclut_sigmoid__(clut, max, type, red); \
gcc_6_1_1_workaround = gp; \
if (gcc_6_1_1_workaround) \
libclut_sigmoid__(clut, max, type, green); \
gcc_6_1_1_workaround = bp; \
if (gcc_6_1_1_workaround) \
libclut_sigmoid__(clut, max, type, blue); \
} \
while (0)
/**
* Apply S-curve correction on the colour curves.
* This is intended for fine tuning LCD monitors,
* 4.5 is good value start start testing at.
* You would probably like to use rgb_limits before
* this to adjust the blackpoint as that is the
* only way to adjust the blackpoint on many LCD
* monitors.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lm'.
*
* Intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param channel The channel, must be either "red", "green", or "blue".
*/
#define libclut_sigmoid__(clut, max, type, channel) \
do \
{ \
double s__ = *gcc_6_1_1_workaround, l__; \
size_t i__; \
for (i__ = 0; i__ < (clut)->channel##_size; i__++) \
{ \
l__ = log(m__ / (clut)->channel[i__] - 1); \
if (isnan(l__) || isinf(l__)) \
l__ = 37.024483 * (isinf(l__) > 0 ? +1 : -1); \
(clut)->channel[i__] = (type)(m__ * (h__ - l__ / s__)); \
} \
} \
while (0)
/**
* Changes the blackpoint and the whitepoint, using sRGB.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rmin The red component value of the blackpoint.
* @param rmax The red component value of the whitepoint.
* @param gmin The green component value of the blackpoint.
* @param gmax The green component value of the whitepoint.
* @param bmin The blue component value of the blackpoint.
* @param bmax The blue component value of the whitepoint.
*/
#define libclut_rgb_limits(clut, max, type, rmin, rmax, gmin, gmax, bmin, bmax) \
do \
{ \
double diff__; \
if (!libclut_0__(rmin) || !libclut_1__(rmax)) \
{ \
diff__ = (double)(rmax) - (double)(rmin); \
libclut__(clut, red, type, LIBCLUT_VALUE / (double)(max) * diff__ + (rmin)); \
} \
if (!libclut_0__(gmin) || !libclut_1__(gmax)) \
{ \
diff__ = (double)(gmax) - (double)(gmin); \
libclut__(clut, green, type, LIBCLUT_VALUE / (double)(max) * diff__ + (gmin)); \
} \
if (!libclut_0__(bmin) || !libclut_1__(bmax)) \
{ \
diff__ = (double)(bmax) - (double)(bmin); \
libclut__(clut, blue, type, LIBCLUT_VALUE / (double)(max) * diff__ + (bmin)); \
} \
} \
while (0)
/**
* Changes the blackpoint and the whitepoint, using CIE xyY.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rmin The red component value of the blackpoint.
* @param rmax The red component value of the whitepoint.
* @param gmin The green component value of the blackpoint.
* @param gmax The green component value of the whitepoint.
* @param bmin The blue component value of the blackpoint.
* @param bmax The blue component value of the whitepoint.
*/
#define libclut_cie_limits(clut, max, type, rmin, rmax, gmin, gmax, bmin, bmax) \
do \
{ \
double rd__ = (rmax) - (rmin), gd__ = (gmax) - (gmin), bd__ = (bmax) - (bmin); \
libclut_cie__(clut, max, type, \
libclut_eq__((rmin), (gmin)) && libclut_eq__((gmin), (bmin)) && \
libclut_eq__((rmax), (gmax)) && libclut_eq__((gmax), (bmax)), \
!libclut_0__(rmin) || !libclut_1__(rmax), \
!libclut_0__(gmin) || !libclut_1__(gmax), \
!libclut_0__(bmin) || !libclut_1__(bmax), \
Y__ * rd__ + (rmin), Y__ * gd__ + (gmin), Y__ * bd__ + (bmin)); \
} \
while (0)
/**
* Manipulate the colour curves using a function on the sRGB colour space.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Function to manipulate the red colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param g Function to manipulate the green colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param b Function to manipulate the blue colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
*/
#define libclut_manipulate(clut, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
double (*gcc_6_1_1_workaround__)(double); \
gcc_6_1_1_workaround__ = r; \
if (gcc_6_1_1_workaround__) \
libclut__(clut, red, type, m__ * (gcc_6_1_1_workaround__)(LIBCLUT_VALUE / m__)); \
gcc_6_1_1_workaround__ = g; \
if (gcc_6_1_1_workaround__) \
libclut__(clut, green, type, m__ * (gcc_6_1_1_workaround__)(LIBCLUT_VALUE / m__)); \
gcc_6_1_1_workaround__ = b; \
if (gcc_6_1_1_workaround__) \
libclut__(clut, blue, type, m__ * (gcc_6_1_1_workaround__)(LIBCLUT_VALUE / m__)); \
} \
while (0)
/**
* Manipulate the colour curves using a function on the CIE xyY colour space.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Function to manipulate the red colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param g Function to manipulate the green colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param b Function to manipulate the blue colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
*/
#define libclut_cie_manipulate(clut, max, type, r, g, b) \
libclut_cie__(clut, max, type, (r) && (g) && (b), r, g, b, (r)(Y__), (g)(Y__), (b)(Y__))
/**
* Resets colour curvers to linear mappings.
* (Identity mapping if imaginged to map from [0, 1] to [0, 1].)
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to reset the red colour curve.
* @param g Whether to reset the green colour curve.
* @param b Whether to reset the blue colour curve.
*/
#define libclut_start_over(clut, max, type, r, g, b) \
do \
{ \
size_t i__; \
double m__, max__ = (double)(max); \
if (r) \
{ \
m__ = (double)((clut)->red_size - 1); \
for (i__ = 0; i__ < (clut)->red_size; i__++) \
(clut)->red[i__] = (type)(((double)i__ / m__) * max__); \
} \
if (g) \
{ \
m__ = (double)((clut)->green_size - 1); \
for (i__ = 0; i__ < (clut)->green_size; i__++) \
(clut)->green[i__] = (type)(((double)i__ / m__) * max__); \
} \
if (b) \
{ \
m__ = (double)((clut)->blue_size - 1); \
for (i__ = 0; i__ < (clut)->blue_size; i__++) \
(clut)->blue[i__] = (type)(((double)i__ / m__) * max__); \
} \
} \
while (0)
/**
* Clip colour curves to only map to values between the minimum and maximum.
* This should be done, before apply the curves, and before applying changes
* with limited domain.
*
* Values below 0 are set to 0, and values above `max` are set to `max`.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to clip the red colour curve.
* @param g Whether to clip the green colour curve.
* @param b Whether to clip the blue colour curve.
*/
#define libclut_clip(clut, max, type, r, g, b) \
do \
{ \
if (r) libclut__(clut, red, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \
if (g) libclut__(clut, green, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \
if (b) libclut__(clut, blue, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \
} \
while (0)
/**
* Truncates a value to fit a boundary.
*
* None of the parameter may have side-effects.
*
* Intended for internal use.
*
* @param min The minimum allowed value.
* @param val The current value.
* @param max The maximum allowed value.
* @return The value truncated into its boundary.
*/
#define libclut_clip__(min, val, max) \
(LIBCLUT_VALUE < (min) ? (min) : LIBCLUT_VALUE > (max) ? (max) : LIBCLUT_VALUE)
/**
* Emulates low colour resolution.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rx The desired emulated red encoding resolution, 0 for unchanged.
* @param ry The desired emulated red output resolution, 0 for unchanged.
* @param gx The desired emulated green encoding resolution, 0 for unchanged.
* @param gy The desired emulated green output resolution, 0 for unchanged.
* @param bx The desired emulated blue encoding resolution, 0 for unchanged.
* @param by The desired emulated blue output resolution, 0 for unchanged.
*/
#define libclut_lower_resolution(clut, max, type, rx, ry, gx, gy, bx, by) \
do \
{ \
libclut_lower_resolution__(clut, red, max, type, rx, ry); \
libclut_lower_resolution__(clut, green, max, type, gx, gy); \
libclut_lower_resolution__(clut, blue, max, type, bx, by); \
} \
while (0)
/**
* Emulates low colour resolution of a channel.
*
* None of the parameter may have side-effects.
*
* Intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param channel The channel, must be either "red", "green", or "blue".
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param x The desired emulated encoding resolution, 0 for unchanged.
* @param y The desired emulated output resolution, 0 for unchanged.
*/
#define libclut_lower_resolution__(clut, channel, max, type, x, y) \
do \
if ((x) || (y)) \
{ \
size_t x__, y__, i__, n__ = (clut)->channel##_size; \
double xm__ = (double)((x) - 1), ym__ = (double)((y) - 1); \
double m__ = (double)(max), nm__ = (double)(n__ - 1); \
type c__[n__]; /* Do not use alloca! */ \
const double h__ = (double)5 / 10; \
for (i__ = 0; i__ < n__; i__++) \
{ \
if ((x__ = i__), (x)) \
{ \
x__ = (size_t)((double)i__ * (double)(x) / (double)n__); \
x__ = (size_t)((double)x__ * nm__ / xm__); \
} \
if (!(y)) \
c__[i__] = (clut)->channel[x__]; \
else \
{ \
y__ = (size_t)((double)((clut)->channel[x__]) / (max) * ym__ + h__); \
c__[i__] = (type)((double)y__ / ym__ * m__); \
} \
} \
memcpy((clut)->channel, c__, n__ * sizeof(type)); \
} \
while (0)
/**
* Translates a gamma ramp structure to another gamma ramp structure type.
*
* None of the parameter may have side-effects.
*
* @param dclut Pointer to the desired gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars `red_size`,
* `green_size`, and `blue_size`. Ramp structures from
* libgamma or libcoopgamma can be used.
* @param dmax The maximum value on each stop in the ramps in `dclut`.
* @param dtype The data type used for each stop in the ramps in `dclut`.
* @param sclut Pointer to the set gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars `red_size`,
* `green_size`, and `blue_size`. Ramp structures from
* libgamma or libcoopgamma can be used.
* @param smax The maximum value on each stop in the ramps in `sclut`.
* @param stype The data type used for each stop in the ramps in `sclut`.
* (Not actually used.)
*/
#define libclut_translate(dclut, dmax, dtype, sclut, smax, stype) \
do \
{ \
libclut_translate__(dclut, dmax, dtype, sclut, smax, stype, red); \
libclut_translate__(dclut, dmax, dtype, sclut, smax, stype, green); \
libclut_translate__(dclut, dmax, dtype, sclut, smax, stype, blue); \
} \
while (0)
/**
* Translates a gamma ramp structure to another gamma ramp structure type.
*
* None of the parameter may have side-effects.
*
* This is intended for internal use.
*
* @param dclut Pointer to the desired gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars `red_size`,
* `green_size`, and `blue_size`. Ramp structures from
* libgamma or libcoopgamma can be used.
* @param dmax The maximum value on each stop in the ramps in `dclut`.
* @param dtype The data type used for each stop in the ramps in `dclut`.
* @param sclut Pointer to the set gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars `red_size`,
* `green_size`, and `blue_size`. Ramp structures from
* libgamma or libcoopgamma can be used.
* @param smax The maximum value on each stop in the ramps in `sclut`.
* @param stype The data type used for each stop in the ramps in `sclut`.
* (Not actually used.)
* @param channel The channel, must be either "red", "green", or "blue".
*/
#define libclut_translate__(dclut, dmax, dtype, sclut, smax, stype, channel) \
do \
{ \
size_t di__, si__, sj__; \
size_t dn__ = (dclut)->channel##_size; \
size_t sn__ = (sclut)->channel##_size; \
double dm__ = (double)(dmax); \
double sm__ = (double)(smax); \
double dmsm__ = dm__ / sm__; \
double x__, y__; \
if (dn__ == sn__) \
for (di__ = 0; di__ < dn__; di__++) \
{ \
y__ = (double)((sclut)->channel[di__]) * dmsm__; \
(dclut)->channel[di__] = (dtype)y__; \
} \
else \
for (di__ = 0; di__ < dn__; di__++) \
{ \
x__ = di__ / (dn__ - 1) * (sn__ - 1); \
si__ = (size_t)(x__); \
sj__ = si__ + (si__ != sn__); \
x__ -= (double)si__; \
y__ = (double)((sclut)->channel[si__]) * (1 - x__); \
y__ += (double)((sclut)->channel[sj__]) * (x__); \
y__ *= dmsm__; \
(dclut)->channel[di__] = (dtype)y__; \
} \
} \
while (0)
/**
* Applies a filter or calibration.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param filter Same as `clut`, but for the filter to apply.
* @param fmax Same as `max`, but for the filter to apply.
* @param ftype Same as `type`, but for the filter to apply. (Not actually used).
* @param r Whether to apply the filter for the red curve.
* @param g Whether to apply the filter for the green curve.
* @param b Whether to apply the filter for the blue curve.
*/
#define libclut_apply(clut, max, type, filter, fmax, ftype, r, g, b) \
do \
{ \
if (r) libclut_apply__(clut, max, type, filter, fmax, ftype, red); \
if (g) libclut_apply__(clut, max, type, filter, fmax, ftype, green); \
if (b) libclut_apply__(clut, max, type, filter, fmax, ftype, blue); \
} \
while (0)
/**
* Applies a filter or calibration for one channel.
*
* None of the parameter may have side-effects.
*
* Intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param filter Same as `clut`, but for the filter to apply.
* @param fmax Same as `max`, but for the filter to apply.
* @param ftype Same as `type`, but for the filter to apply. (Not actually used).
* @param channel The channel, must be either "red", "green", or "blue".
*/
#define libclut_apply__(clut, max, type, filter, fmax, ftype, channel) \
do \
{ \
size_t i__, rn__ = (clut)->channel##_size, fn__ = (filter)->channel##_size - 1; \
double x__, rm__ = (double)(max), m__ = (double)(max) / (double)(fmax); \
for (i__ = 0; i__ < rn__; i__++) \
{ \
x__ = (double)((clut)->channel[i__]) / rm__ * (double)fn__; \
(clut)->channel[i__] = (type)((double)((filter)->channel[(size_t)x__]) * m__); \
} \
} \
while (0)
/**
* Applies a filter or calibration, using CIE xyY.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param filter Same as `clut`, but for the filter to apply.
* @param fmax Same as `max`, but for the filter to apply.
* @param ftype Same as `type`, but for the filter to apply. (Not actually used).
* @param r Whether to apply the filter for the red curve.
* @param g Whether to apply the filter for the green curve.
* @param b Whether to apply the filter for the blue curve.
*/
#define libclut_cie_apply(clut, max, type, filter, fmax, ftype, r, g, b) \
do \
{ \
size_t rfn__ = (filter)->red_size - 1, gfn__ = (filter)->green_size - 1; \
size_t bfn__ = (filter)->blue_size - 1, x__; \
size_t rm__ = (double)(max), fm__ = (double)(fmax); \
libclut_cie__(clut, max, type, 0, r, g, b, \
(x__ = (size_t)(Y__ / rm__ * rfn__), (double)((filter)->red[x__]) / fm__), \
(x__ = (size_t)(Y__ / rm__ * gfn__), (double)((filter)->green[x__]) / fm__), \
(x__ = (size_t)(Y__ / rm__ * bfn__), (double)((filter)->blue[x__]) / fm__)); \
} \
while (0)
/**
* Modify a ramp.
*
* None of the parameter may have side-effects.
*
* This is intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have and array
* named `channel` and a scalar named `channel` followed
* by "_size".
* @param channel The channel, must be either "red", "green", or "blue".
* @param type The data type used for each stop in the ramps.
* @param expr Expression that evalutes the value a stop should have.
* It can use the variable `LIBCLUT_VALUE` to get the
* current value of the stop.
*/
#define libclut__(clut, channel, type, expr) \
do \
{ \
size_t i__, n__ = (clut)->channel##_size; \
type LIBCLUT_VALUE; \
for (i__ = 0; i__ < n__; i__++) \
{ \
LIBCLUT_VALUE = (clut)->channel[i__]; \
(clut)->channel[i__] = (type)(expr); \
} \
} \
while (0)
/**
* Modify a ramp set in CIE xyY.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* This is intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param utest Whether all channels can be modified at the same time.
* This test does not have to include the ramp size.
* @param rtest Whether the red channel have to be modified.
* @param gtest Whether the green channel have to be modified.
* @param btest Whether the blue channel have to be modified.
* @param rexpr Expression calculating the intensity of the red channel.
* The current value is stored in `Y__`.
* @param gexpr Expression calculating the intensity of the green channel.
* The current value is stored in `Y__`.
* @param bexpr Expression calculating the intensity of the blue channel.
* The current value is stored in `Y__`.
*/
#define libclut_cie__(clut, max, type, utest, rtest, gtest, btest, rexpr, gexpr, bexpr) \
do \
{ \
size_t rn__ = (clut)->red_size; \
size_t gn__ = (clut)->green_size; \
size_t bn__ = (clut)->blue_size; \
size_t i__; \
double x__, y__, Y__, r__, g__, b__; \
double m__ = (double)(max); \
type* rs__ = (clut)->red; \
type* gs__ = (clut)->green; \
type* bs__ = (clut)->blue; \
if ((rn__ == gn__) && (gn__ == bn__) && (utest)) \
{ \
if (!(rtest)) \
break; \
for (i__ = 0; i__ < rn__; i__++) \
{ \
libclut_model_srgb_to_ciexyy(rs__[i__] / m__, gs__[i__] / m__, \
bs__[i__] / m__, &x__, &y__, &Y__); \
libclut_model_ciexyy_to_srgb(x__, y__, rexpr, &r__, &g__, &b__); \
rs__[i__] = (type)(r__ * m__); \
gs__[i__] = (type)(g__ * m__); \
bs__[i__] = (type)(b__ * m__); \
} \
} \
else if ((rn__ == gn__) && (gn__ == bn__)) \
{ \
if (!(rtest) && !(gtest) && !(btest)) \
break; \
for (i__ = 0; i__ < rn__; i__++) \
{ \
libclut_model_srgb_to_ciexyy(rs__[i__] / m__, gs__[i__] / m__, \
bs__[i__] / m__, &x__, &y__, &Y__); \
if (rtest) \
{ \
libclut_model_ciexyy_to_srgb(x__, y__, rexpr, &r__, &g__, &b__); \
rs__[i__] = (type)(r__ * m__); \
} \
if (gtest) \
{ \
libclut_model_ciexyy_to_srgb(x__, y__, gexpr, &r__, &g__, &b__); \
gs__[i__] = (type)(g__ * m__); \
} \
if (btest) \
{ \
libclut_model_ciexyy_to_srgb(x__, y__, bexpr, &r__, &g__, &b__); \
bs__[i__] = (type)(b__ * m__); \
} \
} \
} \
else \
{ \
if (rtest) \
for (i__ = 0; i__ < rn__; i__++) \
libclut_cie___(clut, max, type, r, rexpr, i__, \
libclut_i__(i__, rn__, gn__), \
libclut_i__(i__, rn__, bn__)); \
if (gtest) \
for (i__ = 0; i__ < rn__; i__++) \
libclut_cie___(clut, max, type, g, gexpr, \
libclut_i__(i__, gn__, rn__), i__, \
libclut_i__(i__, gn__, bn__)); \
if (btest) \
for (i__ = 0; i__ < rn__; i__++) \
libclut_cie___(clut, max, type, b, bexpr, \
libclut_i__(i__, bn__, rn__), \
libclut_i__(i__, bn__, gn__), i__); \
} \
} \
while (0)
/**
* Modify a ramp stop in CIE xyY.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* This is intended for internal use.
* Assumes the existence of variables defined in `libclut_cie__`.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param c Either "r" for red, "g" for green, or "b" for blue.
* @param expr Expression calculating the intensity of the channel.
* @param ri The index of the stop translated to the red channel.
* @param gi The index of the stop translated to the green channel.
* @param bi The index of the stop translated to the blue channel.
*/
#define libclut_cie___(clut, max, type, c, expr, ri, gi, bi) \
do \
{ \
for (i__ = 0; i__ < c##n__; i__++) \
{ \
libclut_model_srgb_to_ciexyy(rs__[(ri)] / m__, gs__[(gi)] / m__, \
bs__[(bi)] / m__, &x__, &y__, &Y__); \
libclut_model_ciexyy_to_srgb(x__, y__, expr, &r__, &g__, &b__); \
c##s__[i__] = (type)(c##__ * m__); \
} \
} \
while (0)
/**
* Translate an index from one channel to another.
*
* @param i The index in the input channel.
* @param in The size of the input channel.
* @param out The size of the output channel.
* @return The index in the output channel.
*/
#define libclut_i__(i, in, out) \
(size_t)((double)(i) * (double)(out) / (double)(in))
#if defined(__GNUC__) && !defined(__clang__)
# define LIBCLUT_GCC_ONLY__(x) x
#else
# define LIBCLUT_GCC_ONLY__(x) /* do nothing */
#endif
/**
* Convert one component from [0, 1] linear sRGB to [0, 1] sRGB.
*
* If the macro variant is used, the argument must not have
* any side-effects. The macro variant requires linking with
* '-lm'.
*
* @param c The linear sRGB value.
* @return Corresponding sRGB value.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__const__, __leaf__)))
double (libclut_model_linear_to_standard1)(double);
#define libclut_model_linear_to_standard1(c) \
(((double)(c) <= 0.0031308) ? (12.92 * (double)(c)) : ((1.055) * pow((double)(c), 1 / 2.4) - 0.055))
/**
* Convert [0, 1] linear sRGB to [0, 1] sRGB.
*
* The macro variant requires linking with '-lm',
* if the 'libclut_model_linear_to_standard1' is defined,
* otherwise it requires linking with '-lclut'.
*
* @param r Pointer to the linear red component,
* and output parameter for the red component.
* @param g Pointer to the linear green component,
* and output parameter for the green component.
* @param b Pointer to the linear blue component,
* and output parameter for the blue component.
*/
void (libclut_model_linear_to_standard)(double*, double*, double*);
#define libclut_model_linear_to_standard(r, g, b) \
do \
{ \
double *r__ = (r), *g__ = (g), *b__ = (b); \
*r__ = libclut_model_linear_to_standard1(*r__); \
*g__ = libclut_model_linear_to_standard1(*g__); \
*b__ = libclut_model_linear_to_standard1(*b__); \
} \
while (0)
/**
* Convert one component from [0, 1] sRGB to [0, 1] linear sRGB.
*
* If the macro variant is used, the argument must not have
* any side-effects. The macro variant requires linking with
* '-lm'.
*
* @param c The sRGB value.
* @return Corresponding linear sRGB value.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__const__, __leaf__)))
double (libclut_model_standard_to_linear1)(double);
#define libclut_model_standard_to_linear1(c) \
(((double)(c) <= 0.04045) ? ((double)(c) / 12.92) : pow(((double)(c) + 0.055) / 1.055, 2.4))
/**
* Convert [0, 1] sRGB to [0, 1] linear sRGB.
*
* The macro variant requires linking with '-lm',
* if the 'libclut_model_standard_to_linear1' is defined,
* otherwise it requires linking with '-lclut'.
*
* @param r Pointer to the red component, and output
* parameter for the linear red component.
* @param g Pointer to the green component, and output
* parameter for the linear green component.
* @param b Pointer to the blue component, and output
* parameter for the linear blue component.
*/
void (libclut_model_standard_to_linear)(double*, double*, double*);
#define libclut_model_standard_to_linear(r, g, b) \
do \
{ \
double *r__ = (r), *g__ = (g), *b__ = (b); \
*r__ = libclut_model_standard_to_linear1(*r__); \
*g__ = libclut_model_standard_to_linear1(*g__); \
*b__ = libclut_model_standard_to_linear1(*b__); \
} \
while (0)
/**
* Convert CIE xyY to CIE XYZ.
*
* @param x The x parameter.
* @param y The y parameter.
* @param Y The Y parameter. This is also the Y (middle) parameter for the CIE XYZ colour.
* @param X Output parameter for the X parameter.
* @param Z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ciexyy_to_ciexyz)(double, double, double, double*, double*);
#define libclut_model_ciexyy_to_ciexyz(x, y, Y, X, Z) \
do \
{ \
double x__ = (x), y__ = (y), Y__ = (Y), *X__ = (X), *Z__ = (Z); \
*X__ = libclut_0__(y__) ? Y__ : (Y__ * x__ / y__); \
*Z__ = libclut_0__(y__) ? Y__ : (Y__ * (1 - x__ - y__) / y__); \
} \
while (0)
/**
* Convert CIE XYZ to CIE xyY.
*
* @param X The X parameter.
* @param Y The Y parameter. This is also the Y (last) parameter for the CIE xyY colour.
* @param Z The Z parameter.
* @param x Output parameter for the x parameter.
* @param y Output parameter for the y parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ciexyz_to_ciexyy)(double, double, double, double*, double*);
#define libclut_model_ciexyz_to_ciexyy(X, Y, Z, x, y) \
do \
{ \
double X__ = (X), Y__ = (Y), Z__ = (Z), *x__ = (x), *y__ = (y); \
double s__ = X__ + Y__ + Z__; \
if (libclut_0__(s__)) \
*x__ = *y__ = 0; \
else \
*x__ = X__ / s__, *y__ = Y__ / s__; \
} \
while (0)
/**
* Convert CIE XYZ to [0, 1] linear sRGB.
*
* @param X The X parameter.
* @param Y The Y parameter.
* @param Z The Z parameter.
* @param r Output parameter for the red component.
* @param g Output parameter for the green component.
* @param b Output parameter for the blue component.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ciexyz_to_linear)(double, double, double, double*, double*, double*);
#define libclut_model_ciexyz_to_linear(X, Y, Z, r, g, b) \
do \
{ \
double X__ = (X), Y__ = (Y), Z__ = (Z); \
*(r) = ( 3.2404500 * X__) + (-1.537140 * Y__) + (-0.4985320 * Z__); \
*(g) = (-0.9692660 * X__) + ( 1.876010 * Y__) + ( 0.0415561 * Z__); \
*(b) = ( 0.0556434 * X__) + (-0.204026 * Y__) + ( 1.0572300 * Z__); \
} \
while (0)
/**
* Convert [0, 1] linear sRGB to CIE XYZ.
*
* @param r The red component.
* @param g The green component.
* @param b The blue component.
* @param X Output parameter for the X parameter.
* @param Y Output parameter for the Y parameter.
* @param Z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_linear_to_ciexyz)(double, double, double, double*, double*, double*);
#define libclut_model_linear_to_ciexyz(r, g, b, X, Y, Z) \
do \
{ \
double r__ = (r), g__ = (g), b__ = (b); \
*(X) = (0.4124564 * r__) + (0.3575761 * g__) + (0.1804375 * b__); \
*(Y) = (0.2126729 * r__) + (0.7151522 * g__) + (0.0721750 * b__); \
*(Z) = (0.0193339 * r__) + (0.1191920 * g__) + (0.9503041 * b__); \
} \
while (0)
/**
* Convert [0, 1] sRGB to CIE xyY.
*
* The macro variant requires linking with '-lclut'
* if any of `libclut_model_ciexyz_to_ciexyy`,
* `libclut_model_linear_to_ciexyz`, and
* `libclut_model_standard_to_linear` are undefined.
* The macro variant requires linking with '-lm' if
* neither `libclut_model_standard_to_linear` nor
* `libclut_model_standard_to_linear1` are undefined.
*
* @param r The red component.
* @param g The green component.
* @param b The blue component.
* @param x Output parameter for the x parameter.
* @param y Output parameter for the y parameter.
* @param Y Output parameter for the Y parameter.
*/
void (libclut_model_srgb_to_ciexyy)(double, double, double, double*, double*, double*);
#define libclut_model_srgb_to_ciexyy(r, g, b, x, y, Y) \
do \
{ \
double r___ = (r), g___ = (g), b___ = (b); \
double *x___ = (x), *y___ = (y), *Y___ = (Y); \
double X___, Z___; \
libclut_model_standard_to_linear(&r___, &g___, &b___); \
libclut_model_linear_to_ciexyz(r___, g___, b___, &X___, Y___, &Z___); \
libclut_model_ciexyz_to_ciexyy(X___, *Y___, Z___, x___, y___); \
} \
while (0)
/**
* Convert CIE xyY to [0, 1] sRGB.
*
* The macro variant requires linking with '-lclut'
* if any of `libclut_model_ciexyy_to_ciexyz`,
* `libclut_model_ciexyz_to_linear`, and
* `libclut_model_linear_to_standard` are undefined.
* The macro variant requires linking with '-lm' if
* neither `libclut_model_linear_to_standard` nor
* `libclut_model_linear_to_standard1` are undefined.
*
* @param x The x parameter.
* @param y The y parameter.
* @param Y The Y parameter.
* @param r Output parameter for the red component.
* @param g Output parameter for the green component.
* @param b Output parameter for the blue component.
*/
void (libclut_model_ciexyy_to_srgb)(double, double, double, double*, double*, double*);
#define libclut_model_ciexyy_to_srgb(x, y, Y, r, g, b) \
do \
{ \
double x___ = (x), y___ = (y), Y___ = (Y); \
double *r___ = (r), *g___ = (g), *b___ = (b); \
double X___, Z___; \
libclut_model_ciexyy_to_ciexyz(x___, y___, Y___, &X___, &Z___); \
libclut_model_ciexyz_to_linear(X___, Y___, Z___, r___, g___, b___); \
libclut_model_linear_to_standard(r___, g___, b___); \
} \
while(0)
/**
* Convert from CIE XYZ to CIE L*a*b*.
*
* The macro variant requires linking with '-lm'.
*
* @param X The X parameter.
* @param Y The Y parameter.
* @param Z The Z parameter.
* @param L Output parameter for the L* component.
* @param a Output parameter for the a* component.
* @param b Output parameter for the b* component.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ciexyz_to_cielab)(double, double, double, double*, double*, double*);
#define libclut_model_ciexyz_to_cielab(X, Y, Z, L, a, b) \
do \
{ \
double X__ = (X), Y__ = (Y), Z__ = (Z); \
X__ /= 0.95047, Z__ /= 1.08883; \
X__ = LIBCLUT_MODEL_CIEXYZ_TO_CIELAB__(X__); \
Y__ = LIBCLUT_MODEL_CIEXYZ_TO_CIELAB__(Y__); \
Z__ = LIBCLUT_MODEL_CIEXYZ_TO_CIELAB__(Z__); \
*(L) = 116 * Y__ - 16; \
*(a) = 500 * (X__ - Y__); \
*(b) = 200 * (Y__ - Z__); \
} \
while (0)
#define LIBCLUT_MODEL_CIEXYZ_TO_CIELAB__(C) \
(((C) > 0.00885642) ? pow((C), 1.0 / 3) : ((7.78 + 703.0 / 99900) * (C) + 0.1379310))
/**
* Convert from CIE L*a*b* to CIE XYZ.
*
* @param L The L* component.
* @param a The a* component.
* @param b The b* component.
* @param X Output parameter for the X parameter.
* @param Y Output parameter for the Y parameter.
* @param Z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_cielab_to_ciexyz)(double, double, double, double*, double*, double*);
#define libclut_model_cielab_to_ciexyz(L, a, b, X, Y, Z) \
do \
{ \
double L__ = (L), a__ = (a), b__ = (b); \
double *X__ = (X), *Y__ = (Y), *Z__ = (Z); \
*Y__ = (L__ + 16) / 116; \
*X__ = a__ / 500 + *Y__; \
*Z__ = *Y__ - b__ / 200; \
*X__ = LIBCLUT_MODEL_CIELAB_TO_CIEXYZ__(*X__) * 0.95047; \
*Y__ = LIBCLUT_MODEL_CIELAB_TO_CIEXYZ__(*Y__); \
*Z__ = LIBCLUT_MODEL_CIELAB_TO_CIEXYZ__(*Z__) * 1.08883; \
} \
while (0)
#define LIBCLUT_MODEL_CIELAB_TO_CIEXYZ__(C) \
(((C)*(C)*(C) > 0.00885642) ? ((C)*(C)*(C)) : (((C) - 0.1379310) / (7.78 + 703.0 / 99900)))
/**
* Convert from CIE XYZ to CIELUV.
*
* Requires linking with `-lm`.
*
* @param X The X component.
* @param Y The Y component.
* @param Z The Z component.
* @param Xn The X component of the specified white object (white point).
* @param Yn The Y component of the specified white object (white point).
* @param Zn The Z component of the specified white object (white point).
* @param L Output parameter for the L* parameter.
* @param u Output parameter for the u* parameter.
* @param v Output parameter for the v* parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ciexyz_to_cieluv)(double, double, double, double, double,
double, double*, double*, double*);
#define libclut_model_ciexyz_to_cieluv(X, Y, Z, Xn, Yn, Zn, L, u, v) \
do \
{ \
double x__ = (Xn), y__ = (Yn); \
double t__ = x__ + 15 * y__ + 3 * (Zn); \
double u__ = 4 * x__ / t__; \
double v__ = 9 * y__ / t__; \
x__ = (X), y__ = (Y); \
t__ = x__ + 15 * y__ + 3 * (Z); \
u__ = 4 * x__ / t__ - u__; \
v__ = 9 * y__ / t__ - v__; \
y__ = (Y) / y__; \
if (y__ * 24389 <= (double)216) \
y__ *= 24389, y__ /= 27; \
else \
y__ = cbrt(y__) * 116 - 16; \
*(L) = y__; \
y__ *= 13; \
*(u) = y__ * u__; \
*(v) = y__ * v__; \
} \
while (0)
/**
* Convert from CIELUV to CIE XYZ.
*
* @param L The L* component.
* @param u The u* component.
* @param v The v* component.
* @param Xn The X component of the specified white object (white point).
* @param Yn The Y component of the specified white object (white point).
* @param Zn The Z component of the specified white object (white point).
* @param X Output parameter for the X parameter.
* @param Y Output parameter for the Y parameter.
* @param Z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_cieluv_to_ciexyz)(double, double, double, double, double,
double, double*, double*, double*);
#define libclut_model_cieluv_to_ciexyz(L, u, v, Xn, Yn, Zn, X, Y, Z) \
do \
{ \
double x__ = (Xn), y__ = (Yn), l__ = (L), l13__ = l__ * 13; \
double t__ = x__ + 15 * y__ + 3 * (Zn); \
double u__ = 4 * x__ / t__; \
double v__ = 9 * y__ / t__; \
u__ = (u) / l13__ + u__; \
v__ = (v) / l13__ + v__; \
if (l__ <= (double)8) \
y__ *= l__ * 27 / 24389; \
else \
{ \
l__ += 16, l__ /= 116; \
y__ *= l__ *= l__ * l__; \
} \
*(Y) = y__; \
*(X) = y__ * 9 * u__ / (4 * v__); \
*(Z) = y__ * (12 - 3 * u__ - 20 * v__) / (4 * v__); \
} \
while (0)
/**
* Convert from CIELCh to CIE L*u*v*.
*
* Requires linking with `-lm`.
*
* @param C The C*_uv component.
* @param h The h_uv component.
* @param u Output parameter for the u* parameter.
* @param v Output parameter for the v* parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_cielch_to_cieluv)(double, double, double*, double*);
#define libclut_model_cielch_to_cieluv(C, h, u, v) \
do \
{ \
double h__ = (h), C__ = (C); \
*(u) = sin(h__) * C__; \
*(v) = cos(h__) * C__; \
} \
while (0)
/**
* Convert from CIE L*u*v* to CIELCh.
*
* Requires linking with `-lm`.
*
* @param u The u* component.
* @param v The v* component.
* @param C Output parameter for the C*_uv parameter.
* @param h Output parameter for the h_uv parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_cieluv_to_cielch)(double, double, double*, double*);
#define libclut_model_cieluv_to_cielch(u, v, C, h) \
do \
{ \
double u__ = (u), v__ = (v__); \
*(C) = sqrt(u__ * u__ + v__ * v__); \
*(h) = atan2(u__, v__); \
} \
while (0)
/**
* Convert from sRGB to YIQ.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_standard_to_linear1` is not undefined.
*
* @param r The R component.
* @param g The G component.
* @param b The B component.
* @param y Output parameter for the Y parameter.
* @param i Output parameter for the I parameter.
* @param q Output parameter for the Q parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_srgb_to_yiq)(double, double, double, double*, double*, double*);
#define libclut_model_srgb_to_yiq(r, g, b, y, i, q) \
do \
{ \
double r__ = libclut_model_standard_to_linear1(r); \
double g__ = libclut_model_standard_to_linear1(g); \
double b__ = libclut_model_standard_to_linear1(b); \
*(y) = r__ * 299 / 1000 + g__ * 587 / 1000 + b__ * 114 / 1000; \
*(i) = r__ * 596 / 1000 - g__ * 247 / 1000 - b__ * 322 / 1000; \
*(q) = r__ * 211 / 1000 - g__ * 523 / 1000 + b__ * 312 / 1000; \
} \
while (0)
/**
* Convert from YIQ to sRGB.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_linear_to_standard1` is not undefined.
*
* @param y The Y component.
* @param i The I component.
* @param q The Q component.
* @param r Output parameter for the R parameter.
* @param g Output parameter for the G parameter.
* @param b Output parameter for the B parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_yiq_to_srgb)(double, double, double, double*, double*, double*);
#define libclut_model_yiq_to_srgb(y, i, q, r, g, b) \
do \
{ \
double y__ = (y), i__ = (i), q__ = (q), r__, g__, b__; \
r__ = y__ + i__ * 596 / 1000 + q__ * 621 / 1000; \
g__ = y__ - i__ * 272 / 1000 - q__ * 647 / 1000; \
b__ = y__ - i__ * 1106 / 1000 + q__ * 1703 / 1000; \
*(r) = libclut_model_linear_to_standard1(r__); \
*(g) = libclut_model_linear_to_standard1(g__); \
*(b) = libclut_model_linear_to_standard1(b__); \
} \
while (0)
/**
* Convert from sRGB to YDbDr.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_standard_to_linear1` is not undefined.
*
* @param r The R component.
* @param g The G component.
* @param b The B component.
* @param y Output parameter for the Y parameter.
* @param db Output parameter for the Db parameter.
* @param dr Output parameter for the Dr parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_srgb_to_ydbdr)(double, double, double, double*, double*, double*);
#define libclut_model_srgb_to_ydbdr(r, g, b, y, db, dr) \
do \
{ \
double r__ = libclut_model_standard_to_linear1(r); \
double g__ = libclut_model_standard_to_linear1(g); \
double b__ = libclut_model_standard_to_linear1(b); \
*(y) = r__ * 299 / 1000 + g__ * 587 / 1000 + b__ * 114 / 1000; \
*(db) = -r__ * 450 / 1000 - g__ * 883 / 1000 + b__ * 1333 / 1000; \
*(dr) = -r__ * 1333 / 1000 + g__ * 1116 / 1000 + b__ * 217 / 1000; \
} \
while (0)
/**
* Convert from YDbDr to sRGB.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_linear_to_standard1` is not undefined.
*
* @param y The Y component.
* @param db The Db component.
* @param dr The Dr component.
* @param r Output parameter for the R parameter.
* @param g Output parameter for the G parameter.
* @param b Output parameter for the B parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ydbdr_to_srgb)(double, double, double, double*, double*, double*);
#define libclut_model_ydbdr_to_srgb(y, db, dr, r, g, b) \
do \
{ \
double y__ = (y), db__ = (db), dr__ = (dr), r__, g__, b__; \
db__ /= 1000000000000000ULL; \
dr__ /= 1000000000000000ULL; \
r__ = y__ + db__ * 92303716148ULL - dr__ * 525912630661865ULL; \
g__ = y__ - db__ * 129132898890509ULL + dr__ * 267899328207599ULL; \
b__ = y__ + db__ * 664679059978955ULL - dr__ * 79202543533ULL; \
*(r) = libclut_model_linear_to_standard1(r__); \
*(g) = libclut_model_linear_to_standard1(g__); \
*(b) = libclut_model_linear_to_standard1(b__); \
} \
while (0)
/**
* Convert from YUV to YDbDr.
*
* @param u The U component.
* @param v The V component.
* @param db Output parameter for the Db parameter.
* @param dr Output parameter for the Dr parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_yuv_to_ydbdr)(double, double, double*, double*);
#define libclut_model_yuv_to_ydbdr(u, v, db, dr) \
do \
{ \
*(db) = 3069 * (u) / 1000; \
*(dr) = -2169 * (v) / 1000; \
} \
while (0)
/**
* Convert from YDbDr to YUV.
*
* @param db The Db component.
* @param dr The Dr component.
* @param u Output parameter for the U parameter.
* @param v Output parameter for the V parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ydbdr_to_yuv)(double, double, double*, double*);
#define libclut_model_ydbdr_to_yuv(db, dr, u, v) \
do \
{ \
*(u) = (db) * 1000 / 3069; \
*(v) = (dr) * 1000 / -2169; \
} \
while (0)
/**
* Convert from sRGB to YPbPr.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_standard_to_linear1` is not undefined.
*
* @param r The R component.
* @param g The G component.
* @param b The B component.
* @param y Output parameter for the Y parameter.
* @param pb Output parameter for the Pb parameter.
* @param pr Output parameter for the Pr parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_srgb_to_ypbpr)(double, double, double, double*, double*, double*);
#define libclut_model_srgb_to_ypbpr(r, g, b, y, pb, pr) \
do \
{ \
double r__ = libclut_model_standard_to_linear1(r); \
double g__ = libclut_model_standard_to_linear1(g); \
double b__ = libclut_model_standard_to_linear1(b); \
double y__; \
y__ = r__ * 2126 / 10000; \
y__ += g__ * 7152 / 10000; \
y__ += b__ * 722 / 10000; \
*(y) = y__; \
*(pb) = b__ - y__; \
*(pr) = r__ - y__; \
; \
} \
while (0)
/**
* Convert from YPbPr to sRGB.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_linear_to_standard1` is not undefined.
*
* @param y The Y component.
* @param pb The Pb component.
* @param pr The Pr component.
* @param r Output parameter for the R parameter.
* @param g Output parameter for the G parameter.
* @param b Output parameter for the B parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ypbpr_to_srgb)(double, double, double, double*, double*, double*);
#define libclut_model_ypbpr_to_srgb(y, pb, pr, r, g, b) \
do \
{ \
double y__ = (y), r__ = (pr) + y__, g__, b__ = (pb) + y__; \
y__ -= r__ * 2126 / 10000; \
y__ -= b__ * 722 / 10000; \
g__ = y__ * 10000 / 7152; \
*(r) = libclut_model_linear_to_standard1(r__); \
*(g) = libclut_model_linear_to_standard1(g__); \
*(b) = libclut_model_linear_to_standard1(b__); \
} \
while (0)
/**
* Convert from sRGB to YCgCo.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_standard_to_linear1` is not undefined.
*
* @param r The R component.
* @param g The G component.
* @param b The B component.
* @param y Output parameter for the Y parameter.
* @param cg Output parameter for the Cg parameter.
* @param co Output parameter for the Co parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_srgb_to_ycgco)(double, double, double, double*, double*, double*);
#define libclut_model_srgb_to_ycgco(r, g, b, y, cg, co) \
do \
{ \
double r__ = libclut_model_standard_to_linear1(r); \
double g__ = libclut_model_standard_to_linear1(g); \
double b__ = libclut_model_standard_to_linear1(b); \
*(y) = r__ / 4 + g__ / 2 + b__ / 4; \
*(cg) = r__ / -4 + g__ / 2 - b__ / 4; \
*(co) = r__ / 2 - b__ / 2; \
} \
while (0)
/**
* Convert from YCgCo to sRGB.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_linear_to_standard1` is not undefined.
*
* @param y The Y component.
* @param cg The Cg component.
* @param co The Co component.
* @param r Output parameter for the R parameter.
* @param g Output parameter for the G parameter.
* @param b Output parameter for the B parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ycgco_to_srgb)(double, double, double, double*, double*, double*);
#define libclut_model_ycgco_to_srgb(y, cg, co, r, g, b) \
do \
{ \
double y__ = (y), cg__ = (cg), co__ = (co); \
double r__ = y__ - cg__ + co__; \
double g__ = y__ + cg__; \
double b__ = y__ - cg__ - co__; \
*(r) = libclut_model_linear_to_standard1(r__); \
*(g) = libclut_model_linear_to_standard1(g__); \
*(b) = libclut_model_linear_to_standard1(b__); \
} \
while (0)
/**
* Convert from CIE 1960 UCS to CIE XYZ.
*
* @param u The u component.
* @param v The v component.
* @param Y The Y component.
* @param x Output parameter for the X parameter.
* @param y Output parameter for the Y parameter.
* @param z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_cie_1960_ucs_to_ciexyz)(double, double, double, double*, double*, double*);
#define libclut_model_cie_1960_ucs_to_ciexyz(u, v, Y, x, y, z) \
do \
{ \
double u__ = (u), v__ = (v), y__ = (Y); \
*(y) = y__; \
*(x) = 3 * y__ * u__ / (2 * v__); \
*(z) = y__ * ((4 - u__) / (2 * v__) - 1) / 5; \
} \
while (0)
/**
* Convert from CIE XYZ to CIE 1960 UCS.
*
* @param x The X component.
* @param y The Y component.
* @param z The Z component.
* @param u Output parameter for the u parameter.
* @param v Output parameter for the v parameter.
* @param Y Output parameter for the Y parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ciexyz_to_cie_1960_ucs)(double, double, double, double*, double*, double*);
#define libclut_model_ciexyz_to_cie_1960_ucs(x, y, z, u, v, Y) \
do \
{ \
double x__ = (x), y__ = (y); \
double d__ = x__ + 15 * y__ + 3 * (z); \
*(u) = 4 * x__ / d__; \
*(v) = 6 * y__ / d__; \
*(Y) = y__; \
} \
while (0)
/**
* Convert from CIEUVW to CIE 1960 UCS.
*
* @param U:double The U* component.
* @param V:double The V* component.
* @param W:double The W* component.
* @param u0:double The u parameter for the white point.
* @param v0:double The v parameter for the white point.
* @param u:double* Output parameter for the u parameter.
* @param v:double* Output parameter for the v parameter.
* @param Y:double* Output parameter for the Y parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_cieuvw_to_cie_1960_ucs)(double, double, double, double, double,
double*, double*, double*);
#define libclut_model_cieuvw_to_cie_1960_ucs(U, V, W, u0, v0, u, v, Y) \
do \
{ \
double w__ = (W), y__ = (w__ + 17) / 25; \
*(Y) = y__ *= y__ * y__; \
w__ *= 13; \
*(u) = (U) / w__ + (u0); \
*(v) = (V) / w__ + (v0); \
} \
while (0)
/**
* Convert from CIE 1960 UCS to CIEUVW.
*
* Requires linking with `-lm`.
*
* @param u:double The u component.
* @param v:double The v component.
* @param Y:double The Y component.
* @param u0:double The u parameter for the white point.
* @param v0:double The v parameter for the white point.
* @param U:double* Output parameter for the U* parameter.
* @param V:double* Output parameter for the V* parameter.
* @param W:double* Output parameter for the W* parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_cie_1960_ucs_to_cieuvw)(double, double, double, double, double,
double*, double*, double*);
#define libclut_model_cie_1960_ucs_to_cieuvw(u, v, Y, u0, v0, U, V, W) \
do \
{ \
double w__ = 25 * cbrt(Y) - 17; \
*(W) = w__; \
w__ *= 13; \
*(U) = w__ * ((u) - (u0)); \
*(V) = w__ * ((v) - (v0)); \
} \
while (0)
/**
* Create a matrix for converting values between
* two RGB colour spaces.
*
* @param from The input colour space, the Y-component is only necessary
* for the white point, `NULL` for CIE XYZ.
* @param to The output colour space, the Y-component is only necessary
* for the white point, `NULL` for CIE XYZ.
* @param M Output matrix for conversion from `from` to `to`.
* @param Minv Output matrix for conversion from `to` to `from`, may be `NULL`.
* @return Zero on success, -1 on error.
*
* @throws EINVAL The colour space cannot be used.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
int libclut_model_get_rgb_conversion_matrix(const libclut_rgb_colour_space_t*,
const libclut_rgb_colour_space_t*,
libclut_colour_space_conversion_matrix_t,
libclut_colour_space_conversion_matrix_t);
/**
* Convert an RGB colour into another RGB colour space.
*
* Both RGB colour spaces must have same gamma functions as sRGB.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_standard_to_linear1` or
* `libclut_model_linear_to_standard1` is not undefined.
*
* @param r The red component of the colour to convert.
* @param g The green component of the colour to convert.
* @param b The blue component of the colour to convert.
* @param M Conversion matrix, create with `libclut_model_get_rgb_conversion_matrix`,
* must not have side-effects.
* @param out_r Output parameter for the new red component.
* @param out_g Output parameter for the new green component.
* @param out_b Output parameter for the new blue component.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_convert_rgb)(double, double, double, libclut_colour_space_conversion_matrix_t,
double*, double*, double*);
#define libclut_model_convert_rgb(r, g, b, M, out_r, out_g, out_b) \
do \
{ \
double r__ = libclut_model_standard_to_linear1(r); \
double g__ = libclut_model_standard_to_linear1(g); \
double b__ = libclut_model_standard_to_linear1(b); \
*(out_r) = libclut_model_linear_to_standard1((M)[0][0] * r__ + (M)[0][1] * g__ + (M)[0][2] * b__); \
*(out_g) = libclut_model_linear_to_standard1((M)[1][0] * r__ + (M)[1][1] * g__ + (M)[1][2] * b__); \
*(out_b) = libclut_model_linear_to_standard1((M)[2][0] * r__ + (M)[2][1] * g__ + (M)[2][2] * b__); \
} \
while (0)
/**
* Convert an RGB colour of a custom RGB colour space to CIE XYZ.
*
* The RGB colour space must have same gamma functions as sRGB.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_standard_to_linear1` is not undefined.
*
* @param r The red component.
* @param g The green component.
* @param b The blue component.
* @param M Conversion matrix, create with `libclut_model_get_rgb_conversion_matrix`,
* must not have side-effects.
* @param x Output parameter for the X component.
* @param y Output parameter for the Y component
* @param z Output parameter for the Z component.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_rgb_to_ciexyz)(double, double, double, libclut_colour_space_conversion_matrix_t,
double*, double*, double*);
#define libclut_model_rgb_to_ciexyz(r, g, b, M, x, y, z) \
do \
{ \
double r__ = libclut_model_standard_to_linear1(r); \
double g__ = libclut_model_standard_to_linear1(g); \
double b__ = libclut_model_standard_to_linear1(b); \
*(x) = (M)[0][0] * r__ + (M)[0][1] * g__ + (M)[0][2] * b__; \
*(y) = (M)[1][0] * r__ + (M)[1][1] * g__ + (M)[1][2] * b__; \
*(z) = (M)[2][0] * r__ + (M)[2][1] * g__ + (M)[2][2] * b__; \
} \
while (0)
/**
* Convert a CIE XYZ colour to a custom RGB colour space.
*
* The RGB colour space must have same gamma functions as sRGB.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_linear_to_standard1` is not undefined.
*
* @param x The X component.
* @param y The Y component.
* @param z The Z component.
* @param M Conversion matrix, create with `libclut_model_get_rgb_conversion_matrix`,
* must not have side-effects.
* @param r Output parameter for the red component.
* @param g Output parameter for the green component
* @param b Output parameter for the blue component.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ciexyz_to_rgb)(double, double, double, libclut_colour_space_conversion_matrix_t,
double*, double*, double*);
#define libclut_model_ciexyz_to_rgb(x, y, z, M, r, g, b) \
do \
{ \
double x__ = (x), y__ = (y), z__ = (z); \
*(r) = libclut_model_linear_to_standard1((M)[0][0] * x__ + (M)[0][1] * y__ + (M)[0][2] * z__); \
*(g) = libclut_model_linear_to_standard1((M)[1][0] * x__ + (M)[1][1] * y__ + (M)[1][2] * z__); \
*(b) = libclut_model_linear_to_standard1((M)[2][0] * x__ + (M)[2][1] * y__ + (M)[2][2] * z__); \
} \
while (0)
#if defined(__clang__)
# pragma GCC diagnostic pop
#endif
#endif