/**
* Copyright © 2016 Mattias Andrée <maandree@member.fsf.org>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef LIBCLUT_H
#define LIBCLUT_H
#include <stddef.h>
#include <string.h>
#include <math.h>
/**
* Apply contrast correction on the colour curves using sRGB.
*
* In this context, contrast is a measure of difference between
* the whitepoint and blackpoint, if the difference is 0 than
* they are both grey.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The contrast parameter for the red curve.
* @param g The contrast parameter for the green curve.
* @param b The contrast parameter for the blue curve.
*/
#define libclut_rgb_contrast(clut, max, type, r, g, b) \
do \
{ \
if ((r) != 1.0) libclut__(clut, red, type, LIBCLUT_VALUE - (max) * 0.5 * (r) + (max) * 0.5); \
if ((g) != 1.0) libclut__(clut, green, type, LIBCLUT_VALUE - (max) * 0.5 * (g) + (max) * 0.5); \
if ((b) != 1.0) libclut__(clut, blue, type, LIBCLUT_VALUE - (max) * 0.5 * (b) + (max) * 0.5); \
} \
while (0)
/**
* Apply contrast correction on the colour curves using CIE xyY.
*
* In this context, contrast is a measure of difference between
* the whitepoint and blackpoint, if the difference is 0 than
* they are both grey.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The contrast parameter for the red curve.
* @param g The contrast parameter for the green curve.
* @param b The contrast parameter for the blue curve.
*/
#define libclut_cie_contrast(clut, max, type, r, g, b) \
libclut_cie__(clut, max, type, (r == g) && (g == b), (r) != 1.0, (g) != 1.0, (b) != 1.0, \
(Y__ - 0.5) * (r) + 0.5, (Y__ - 0.5) * (g) + 0.5, (Y__ - 0.5) * (b) + 0.5)
/**
* Apply brightness correction on the colour curves using sRGB.
*
* In this context, brightness is a measure of the whiteness of the whitepoint.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The brightness parameter for the red curve.
* @param g The brightness parameter for the green curve.
* @param b The brightness parameter for the blue curve.
*/
#define libclut_rgb_brightness(clut, max, type, r, g, b) \
do \
{ \
if ((r) != 1.0) libclut__(clut, red, type, LIBCLUT_VALUE * (r)); \
if ((g) != 1.0) libclut__(clut, green, type, LIBCLUT_VALUE * (g)); \
if ((b) != 1.0) libclut__(clut, blue, type, LIBCLUT_VALUE * (b)); \
} \
while (0)
/**
* Apply brightness correction on the colour curves using CIE xyY.
*
* In this context, brightness is a measure of the whiteness of the whitepoint.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The brightness parameter for the red curve.
* @param g The brightness parameter for the green curve.
* @param b The brightness parameter for the blue curve.
*/
#define libclut_cie_brightness(clut, max, type, r, g, b) \
libclut_cie__(clut, max, type, ((r) == (g)) && ((g) == (b)), \
(r) != 1.0, (g) != 1.0, (b) != 1.0, Y__ * (r), Y__ * (g), Y__ * (b))
/**
* Convert the curves from formatted in standard RGB to linear RGB.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to convert the red colour curve.
* @param g Whether to convert the green colour curve.
* @param b Whether to convert the blue colour curve.
*/
#define libclut_linearise(clut, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (r) \
libclut__(clut, red, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \
if (g) \
libclut__(clut, green, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \
if (b) \
libclut__(clut, blue, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \
} \
while (0)
/**
* Convert the curves from formatted in linear RGB to standard RGB.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to convert the red colour curve.
* @param g Whether to convert the green colour curve.
* @param b Whether to convert the blue colour curve.
*/
#define libclut_standardise(clut, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (r) \
libclut__(clut, red, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \
if (g) \
libclut__(clut, green, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \
if (b) \
libclut__(clut, blue, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \
} \
while (0)
/**
* Apply gamma correction on the colour curves.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The gamma parameter the red colour curve.
* @param g The gamma parameter the green colour curve.
* @param b The gamma parameter the blue colour curve.
*/
#define libclut_gamma(clut, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (r != 1.0) libclut__(clut, red, type, m__ * pow(LIBCLUT_VALUE / m__, 1.0 / (r))); \
if (g != 1.0) libclut__(clut, green, type, m__ * pow(LIBCLUT_VALUE / m__, 1.0 / (g))); \
if (b != 1.0) libclut__(clut, blue, type, m__ * pow(LIBCLUT_VALUE / m__, 1.0 / (b))); \
} \
while (0)
/**
* Reverse the colour curves (negative image with gamma preservation.)
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* This parameter is not used, it is just a dummy, to unify
* the API with the other functions.
* @param type The data type used for each stop in the ramps.
* @param r Whether to invert the red colour curve.
* @param g Whether to invert the green colour curve.
* @param b Whether to invert the blue colour curve.
*/
#define libclut_negative(clut, max, type, r, g, b) \
do \
{ \
size_t i__, n__; \
type t__; \
if (r) \
for (i__ = 0, n__ = (clut)->red_size; i__ < (n__ >> 1); i__) \
{ \
t__ = (clut)->red[i__]; \
(clut)->red[i__] = (clut)->red[n__ - i__ - 1]; \
(clut)->red[n__ - i__ - 1] = t__; \
} \
if (g) \
for (i__ = 0, n__ = (clut)->green_size; i__ < (n__ >> 1); i__) \
{ \
t__ = (clut)->green[i__]; \
(clut)->green[i__] = (clut)->green[n__ - i__ - 1]; \
(clut)->green[n__ - i__ - 1] = t__; \
} \
if (b) \
for (i__ = 0, n__ = (clut)->blue_size; i__ < (n__ >> 1); i__) \
{ \
t__ = (clut)->blue[i__]; \
(clut)->blue[i__] = (clut)->blue[n__ - i__ - 1]; \
(clut)->blue[n__ - i__ - 1] = t__; \
} \
} \
while (0)
/**
* Invert the colour curves (negative image with gamma invertion), using sRGB.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to invert the red colour curve.
* @param g Whether to invert the green colour curve.
* @param b Whether to invert the blue colour curve.
*/
#define libclut_rgb_invert(clut, max, type, r, g, b) \
do \
{ \
if (r) libclut__(clut, red, type, (max) - LIBCLUT_VALUE); \
if (g) libclut__(clut, green, type, (max) - LIBCLUT_VALUE); \
if (b) libclut__(clut, blue, type, (max) - LIBCLUT_VALUE); \
} \
while (0)
/**
* Invert the colour curves (negative image with gamma invertion), using CIE xyY.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to invert the red colour curve.
* @param g Whether to invert the green colour curve.
* @param b Whether to invert the blue colour curve.
*/
#define libclut_cie_invert(clut, max, type, r, g, b) \
libclut_cie__(clut, max, type, (r) && (g) && (b), r, g, b, 1.0 - Y__, 1.0 - Y__, 1.0 - Y__)
/**
* Apply S-curve correction on the colour curves.
* This is intended for fine tuning LCD monitors,
* 4.5 is good value start start testing at.
* You would probably like to use rgb_limits before
* this to adjust the black point as that is the
* only why to adjust the black point on many LCD
* monitors.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rp Pointer to the sigmoid parameter for the red curve. `NULL` for no adjustment.
* @param gp Pointer to the sigmoid parameter for the green curve. `NULL` for no adjustment.
* @param bp Pointer to the sigmoid parameter for the blue curve. `NULL` for no adjustment.
*/
#define libclut_sigmoid(clut, max, type, rp, gp, bp) \
do \
{ \
double r__ = (rp) ? *(rp) : 0.0; \
double g__ = (gp) ? *(gp) : 0.0; \
double b__ = (bp) ? *(bp) : 0.0; \
double m__ = (double)(max); \
size_t i__; \
if (rp) \
for (i__ = 0; i++ < (clut)->red_size; i__++) \
if ((clut)->red[i__] && ((clut)->red[i__] != (max))) \
(clut)->red[i__] = (type)(m__ * (0.5 - log(m__ / (clut)->red[i__] - 1.0) / r__)); \
if (gp) \
for (i__ = 0; i++ < (clut)->green_size; i__++) \
if ((clut)->green[i__] && ((clut)->green[i__] != (max))) \
(clut)->green[i__] = (type)(m__ * (0.5 - log(m__ / (clut)->green[i__] - 1.0) / g__)); \
if (bp) \
for (i__ = 0; i++ < (clut)->blue_size; i__++) \
if ((clut)->blue[i__] && ((clut)->blue[i__] != (max))) \
(clut)->blue[i__] = (type)(m__ * (0.5 - log(m__ / (clut)->blue[i__] - 1.0) / b__)); \
} \
while (0)
/**
* Changes the blackpoint and the whitepoint, using sRGB.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rmin The red component value of the blackpoint.
* @param rmax The red component value of the whitepoint.
* @param gmin The green component value of the blackpoint.
* @param gmax The green component value of the whitepoint.
* @param bmin The blue component value of the blackpoint.
* @param bmax The blue component value of the whitepoint.
*/
#define libclut_rgb_limits(clut, max, type, rmin, rmax, gmin, gmax, bmin, bmax) \
do \
{ \
double diff__; \
if ((rmin != 0.0) || (rmax != 1.0)) \
{ \
diff__ = (double)(rmax__) - (double)(rmin__); \
libclut__(clut, red, type, LIBCLUT_VALUE * diff__ + (rmin__)); \
} \
if ((gmin != 0.0) || (gmax != 1.0)) \
{ \
diff__ = (double)(gmax__) - (double)(gmin__); \
libclut__(clut, green, type, LIBCLUT_VALUE * diff__ + (gmin__)); \
} \
if ((bmin != 0.0) || (bmax != 1.0)) \
{ \
diff__ = (double)(bmax__) - (double)(bmin__); \
libclut__(clut, blue, type, LIBCLUT_VALUE * diff__ + (bmin__)); \
} \
} \
while (0)
/**
* Changes the blackpoint and the whitepoint, using CIE xyY.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rmin The red component value of the blackpoint.
* @param rmax The red component value of the whitepoint.
* @param gmin The green component value of the blackpoint.
* @param gmax The green component value of the whitepoint.
* @param bmin The blue component value of the blackpoint.
* @param bmax The blue component value of the whitepoint.
*/
#define libclut_cie_limits(clut, max, type, rmin, rmax, gmin, gmax, bmin, bmax) \
do \
{ \
double rd__ = (rmax) - (rmin), gd__ = (gmax) - (gmin), bd__ = (bmax) - (bmin); \
libclut_cie__(clut, max, type, ((rmin) == (gmin)) && ((gmin) == (bmin)) && \
((rmax) == (gmax)) && ((gmax) == (bmax)), ((rmin) != 0.0) || ((rmax) != 1.0), \
((gmin) != 0.0) || ((gmax) != 1.0), ((bmin) != 0.0) || ((bmax) != 1.0), \
Y__ * rd__ + (rmin), Y__ * gd__ + (gmin), Y__ * bd__ + (bmin)); \
} \
while (0)
/**
* Manipulate the colour curves using a function on the sRGB colour space.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Function to manipulate the red colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param g Function to manipulate the green colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param b Function to manipulate the blue colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
*/
#define libclut_manipulate(clut, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (r) libclut__(clut, red, type, m__ * (r)(LIBCLUT_VALUE / m__)); \
if (g) libclut__(clut, green, type, m__ * (g)(LIBCLUT_VALUE / m__)); \
if (b) libclut__(clut, blue, type, m__ * (b)(LIBCLUT_VALUE / m__)); \
} \
while (0)
/**
* Manipulate the colour curves using a function on the CIE xyY colour space.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Function to manipulate the red colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param g Function to manipulate the green colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param b Function to manipulate the blue colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
*/
#define libclut_cie_manipulate(clut, max, type, r, g, b) \
libclut_cie__(clut, max, type, (r) && (g) && (b), r, g, b, (r)(Y__), (g)(Y__), (b)(Y__))
/**
* Resets colour curvers to linear mappings.
* (Identity mapping if imaginged to map from [0, 1] to [0, 1].)
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to reset the red colour curve.
* @param g Whether to reset the green colour curve.
* @param b Whether to reset the blue colour curve.
*/
#define libclut_start_over(clut, max, type, r, g, b) \
do \
{ \
size_t i__; \
double m__; \
if (r) \
{ \
m__ = (double)((clut)->red_size - 1); \
for (i__ = 0; i__ < (clut)->red_size; i__) \
(clut)->red[i__] = (type)((i__ / m__) * (max)); \
} \
if (g) \
{ \
m__ = (double)((clut)->green_size - 1); \
for (i__ = 0; i__ < (clut)->green_size; i__) \
(clut)->green[i__] = (type)((i__ / m__) * (max)); \
} \
if (b) \
{ \
m__ = (double)((clut)->blue_size - 1); \
for (i__ = 0; i__ < (clut)->blue_size; i__) \
(clut)->blue[i__] = (type)((i__ / m__) * (max)); \
} \
} \
while (0)
/**
* Clip colour curves to only map to values between the minimum and maximum.
* This should be done, before apply the curves, and before applying changes
* with limited domain.
*
* Values below 0 are set to 0, and values above `max` are set to `max`.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to clip the red colour curve.
* @param g Whether to clip the green colour curve.
* @param b Whether to clip the blue colour curve.
*/
#define libclut_clip(clut, max, type, r, g, b) \
do \
{ \
if (r) libclut__(clut, red, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \
if (g) libclut__(clut, green, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \
if (b) libclut__(clut, blue, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \
} \
while (0)
/**
* Truncates a value to fit a boundary.
*
* None of the parameter may have side-effects.
*
* Intended for internal use.
*
* @param min The minimum allowed value.
* @param val The current value.
* @param max The maximum allowed value.
* @return The value truncated into its boundary.
*/
#define libclut_clip__(min, val, max) \
(LIBCLUT_VALUE < (min) ? (min) : LIBCLUT_VALUE > (max) ? (max) : LIBCLUT_VALUE)
/**
* Emulates low colour resolution.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param x The desired emulated red encoding resolution, 0 for unchanged.
* @param y The desired emulated red output resolution, 0 for unchanged.
* @param x The desired emulated green encoding resolution, 0 for unchanged.
* @param y The desired emulated green output resolution, 0 for unchanged.
* @param x The desired emulated blue encoding resolution, 0 for unchanged.
* @param y The desired emulated blue output resolution, 0 for unchanged.
*/
#define libclut_lower_resolution(clut, max, type, rx, ry, gx, gy, bx, by) \
do \
{ \
libclut_lower_resolution__(clut, red, max, type, rx, ry); \
libclut_lower_resolution__(clut, green, max, type, gx, gy); \
libclut_lower_resolution__(clut, blue, max, type, bx, by); \
} \
while (0)
/**
* Emulates low colour resolution of a channel.
*
* None of the parameter may have side-effects.
*
* Intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param channel The channel, must be either "red", "green", or "blue".
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param x The desired emulated encoding resolution, 0 for unchanged.
* @param y The desired emulated output resolution, 0 for unchanged.
*/
#define libclut_lower_resolution__(clut, channel, max, type, x, y) \
do \
{ \
if ((x) || (y)) \
{ \
size_t x__, y__, i__, n__ = (clut)->channel##_size; \
double xm__ = (double)((x) - 1), ym__ = (double)((y) - 1); \
double m__ = (double)(max); \
type c__[n__]; /* Do not use alloca! */ \
for (i__ = 0; i__ < n__; i__++) \
{ \
if ((x__ = i__), (x)) \
{ \
x__ = (size_t)((double)i__ * (x) / n__); \
x__ = (size_t)((double)x__ * i__ / xm__); \
} \
if (!(y)) \
c__[i__] = (clut)->channel[x__]; \
else \
{ \
y__ = (size_t)((double)((clut)->channel[x__]) / (max) * ym__ + 0.5); \
c__[i__] = (type)((double)y__ / ym__ * m__); \
} \
} \
memcpy((clut)->channel, c__, n__ * sizeof(type)); \
} \
} \
while (0)
/**
* Applies a filter or calibration.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param filter Same as `clut`, but for the filter to apply.
* @param fmax Same as `max`, but for the filter to apply.
* @param ftype Same as `type`, but for the filter to apply. (Not actually used).
* @param r Whether to apply the filter for the red curve.
* @param g Whether to apply the filter for the green curve.
* @param b Whether to apply the filter for the blue curve.
*/
#define libclut_apply(clut, max, type, filter, fmax, ftype, r, g, b) \
do \
{ \
if (r) libclut_apply__(clut, max, type, filter, fmax, ftype, red); \
if (g) libclut_apply__(clut, max, type, filter, fmax, ftype, green); \
if (b) libclut_apply__(clut, max, type, filter, fmax, ftype, blue); \
} \
while (0)
/**
* Applies a filter or calibration for one channel.
*
* None of the parameter may have side-effects.
*
* Intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param filter Same as `clut`, but for the filter to apply.
* @param fmax Same as `max`, but for the filter to apply.
* @param ftype Same as `type`, but for the filter to apply. (Not actually used).
* @param channel The channel, must be either "red", "green", or "blue".
*/
#define libclut_apply__(clut, max, type, filter, fmax, ftype, channel) \
do \
{ \
size_t i__, rn__ = (clut)->channel##_size, fn__ = (filter)->channel##_size; \
size_t x__, rm__ = (double)(max), m__ = (double)(max) / (double)(fmax); \
for (i__ = 0; i__ < rn__; i__++) \
{ \
x__ = (size_t)((double)((clut)->channel[i__]) / rm__ * fn__); \
(clut)->channel[i__] = (type)((double)((filter)->channel[x__]) * m__); \
} \
} \
while (0)
/**
* Applies a filter or calibration, using CIE xyY.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param filter Same as `clut`, but for the filter to apply.
* @param fmax Same as `max`, but for the filter to apply.
* @param ftype Same as `type`, but for the filter to apply. (Not actually used).
* @param r Whether to apply the filter for the red curve.
* @param g Whether to apply the filter for the green curve.
* @param b Whether to apply the filter for the blue curve.
*/
#define libclut_cie_apply(clut, max, type, filter, fmax, ftype, r, g, b) \
do \
{ \
size_t rfn__ = (filter)->red_size, gfn__ = (filter)->green_size; \
size_t bfn__ = (filter)->blue_size, x__; \
size_t rm__ = (double)(max), fm__ = (double)(fmax); \
libclut_cie__(clut, max, type, 0, r, g, b, \
(x__ = (size_t)(Y__ / rm__ * rfn__), (double)((filter)->red[x__]) / fm__), \
(x__ = (size_t)(Y__ / rm__ * gfn__), (double)((filter)->green[x__]) / fm__), \
(x__ = (size_t)(Y__ / rm__ * bfn__), (double)((filter)->blue[x__]) / fm__)); \
} \
while (0)
/**
* Modify a ramp.
*
* None of the parameter may have side-effects.
*
* This is intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have and array
* named `channel` and a scalar named `channel` followed
* by "_size".
* @param channel The channel, must be either "red", "green", or "blue".
* @param type The data type used for each stop in the ramps.
* @param expr Expression that evalutes the value a stop should have.
* It can use the variable `LIBCLUT_VALUE` to get the
* current value of the stop.
*/
#define libclut__(clut, channel, type, expr) \
do \
{ \
size_t i__, n__ = (clut)->channel##_size; \
type LIBCLUT_VALUE; \
for (i__ = 0; i__ < n__; i__++) \
{ \
LIBCLUT_VALUE = (clut)->channel[i__]; \
(clut)->channel[i__] = (type)(expr); \
} \
} \
while (0)
/**
* Modify a ramp set in CIE xyY.
*
* None of the parameter may have side-effects.
*
* This is intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param utest Whether all channels can be modified at the same time.
* This test does not have to include the ramp size.
* @param rtest Whether the red channel have to be modified.
* @param gtest Whether the green channel have to be modified.
* @param btest Whether the blue channel have to be modified.
* @param rexpr Expression calculating the intensity of the red channel.
* The current value is stored in `Y__`.
* @param gexpr Expression calculating the intensity of the green channel.
* The current value is stored in `Y__`.
* @param bexpr Expression calculating the intensity of the blue channel.
* The current value is stored in `Y__`.
*/
#define libclut_cie__(clut, max, type, utest, rtest, gtest, btest, rexpr, gexpr, bexpr) \
do \
{ \
size_t rn__ = (clut)->red_size; \
size_t gn__ = (clut)->green_size; \
size_t bn__ = (clut)->blue_size; \
size_t i__; \
double x__, y__, Y__, r__, g__, b__; \
double m__ = (double)(max); \
type* rs__ = (clut)->red; \
type* gs__ = (clut)->green; \
type* bs__ = (clut)->blue; \
if ((rn__ == gn__) && (gn__ == bn__) && (utest)) \
{ \
if (!(rtest)) \
break; \
for (i__ = 0; i__ < rn__; i__) \
{ \
libclut_model_srgb_to_ciexyy(rs__[i__] / m__, gs__[i__] / m__, \
bs__[i__] / m__, &x__, &y__, &Y__); \
libclut_model_ciexyy_to_srgb(x__, y__, rexpr, &r__, &g__, &b__); \
rs__[i__] = (type)(r__ * m__); \
gs__[i__] = (type)(g__ * m__); \
bs__[i__] = (type)(b__ * m__); \
} \
} \
else if ((rn__ == gn__) && (gn__ == bn__)) \
{ \
if (!(rtest) && !(gtest) && !(btest)) \
break; \
for (i__ = 0; i__ < rn__; i__) \
{ \
libclut_model_srgb_to_ciexyy(rs__[i__] / m__, gs__[i__] / m__, \
bs__[i__] / m__, &x__, &y__, &Y__); \
if (rtest) \
{ \
libclut_model_ciexyy_to_srgb(x__, y__, rexpr, &r__, &g__, &b__); \
rs__[i__] = (type)(r__ * m__); \
} \
if (gtest) \
{ \
libclut_model_ciexyy_to_srgb(x__, y__, gexpr, &r__, &g__, &b__); \
gs__[i__] = (type)(g__ * m__); \
} \
if (btest) \
{ \
libclut_model_ciexyy_to_srgb(x__, y__, nexpr, &r__, &g__, &b__); \
bs__[i__] = (type)(b__ * m__); \
} \
} \
} \
else \
{ \
if (rtest) \
for (i__ = 0; i__ < rn__; i__) \
libclut_cie___(clut, max, type, rexpr, i__, \
libclut_i__(i__, rn__, gn__), \
libclut_i__(i__, rn__, bn__)); \
if (gtest) \
for (i__ = 0; i__ < rn__; i__) \
libclut_cie___(clut, max, type, gexpr, \
libclut_i__(i__, gn__, rn__), i__, \
libclut_i__(i__, gn__, bn__)); \
if (btest) \
for (i__ = 0; i__ < rn__; i__) \
libclut_cie___(clut, max, type, bexpr, i__, \
libclut_i__(i__, bn__, rn__), \
libclut_i__(i__, bn__, gn__), i__); \
} \
} \
while (0)
/**
* Modify a ramp stop in CIE xyY.
*
* None of the parameter may have side-effects.
*
* This is intended for internal use.
* Assumes the existence of variables defined in `libclut_cie__`.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param c Either "r" for red, "g" for green, or "b" for blue.
* @param expr Expression calculating the intensity of the channel.
* @param ri The index of the stop translated to the red channel.
* @param gi The index of the stop translated to the green channel.
* @param bi The index of the stop translated to the blue channel.
*/
#define libclut_cie___(clut, max, type, c, expr, ri, gi, bi) \
do \
{ \
for (i__ = 0; i__ < c##n__; i__) \
{ \
libclut_model_srgb_to_ciexyy(rs__[(ri)] / m__, gs__[(gi)] / m__, \
bs__[(bi)] / m__, &x__, &y__, &Y__); \
libclut_model_ciexyy_to_srgb(x__, y__, expr, &r__, &g__, &b__); \
c##s__[i__] = (type)(c##__ * m__); \
} \
} \
while (0)
/**
* Translate an index from one channel to another.
*
* @param i The index in the input channel.
* @param in The size of the input channel.
* @param out The size of the output channel.
* @return The index in the output channel.
*/
#define libclut_i__(i, in, out) \
(size_t)((double)(i) * (double)(out) / (double)(in))
#if __GNUC__
#define LIBCLUT_GCC_ONLY__(x) x
#else
#define LIBCLUT_GCC_ONLY__(x) /* do nothing */
#endif
/**
* Convert one component from [0, 1] linear RGB to [0, 1] sRGB.
*
* @param c The linear RGB value.
* @return Corresponding sRGB value.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__const__, __leaf__)))
double libclut_model_linear_to_standard1(double);
/**
* Convert [0, 1] linear RGB to [0, 1] sRGB.
*
* @param r Pointer to the linear red component,
* and output parameter for the red component.
* @param g Pointer to the linear green component,
* and output parameter for the green component.
* @param b Pointer to the linear blue component,
* and output parameter for the blue component.
*/
void libclut_model_linear_to_standard(double*, double*, double*);
/**
* Convert one component from [0, 1] sRGB to [0, 1] linear RGB.
*
* @param c The sRGB value.
* @return Corresponding linear RGB value.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__const__, __leaf__)))
double libclut_model_standard_to_linear1(double);
/**
* Convert [0, 1] sRGB to [0, 1] linear RGB.
*
* @param r Pointer to the red component, and output
* parameter for the linear red component.
* @param g Pointer to the green component, and output
* parameter for the linear green component.
* @param b Pointer to the blue component, and output
* parameter for the linear blue component.
*/
void libclut_model_standard_to_linear(double*, double*, double*);
/**
* Convert CIE xyY to CIE XYZ.
*
* @param x The x parameter.
* @param y The y parameter.
* @param Y The Y parameter. This is also the Y (middle) parameter for the CIE XYZ colour.
* @param X Output parameter for the X parameter.
* @param Z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void libclut_model_ciexyy_to_ciexyz(double, double, double, double*, double*);
/**
* Convert CIE XYZ to CIE xyY.
*
* @param X The X parameter.
* @param Y The Y parameter. This is also the Y (last) parameter for the CIE xyY colour.
* @param Z The Z parameter.
* @param x Output parameter for the x parameter.
* @param y Output parameter for the y parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void libclut_model_ciexyz_to_ciexyy(double, double, double, double*, double*);
/**
* Convert CIE XYZ to [0, 1] linear RGB.
*
* @param X The X parameter.
* @param Y The Y parameter.
* @param Z The Z parameter.
* @param r Output parameter for the red component.
* @param g Output parameter for the green component.
* @param b Output parameter for the blue component.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void libclut_model_ciexyz_to_linear(double, double, double, double*, double*, double*);
/**
* Convert [0, 1] linear RGB to CIE XYZ.
*
* @param r The red component.
* @param g The green component.
* @param b The blue component.
* @param X Output parameter for the X parameter.
* @param Y Output parameter for the Y parameter.
* @param Z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void libclut_model_linear_to_ciexyz(double, double, double, double*, double*, double*);
/**
* Convert [0, 1] linear RGB to CIE xyY.
*
* @param r The red component.
* @param g The green component.
* @param b The blue component.
* @param x Output parameter for the x parameter.
* @param y Output parameter for the y parameter.
* @param Y Output parameter for the Y parameter.
*/
void libclut_model_srgb_to_ciexyy(double, double, double, double*, double*, double*);
/**
* Convert CIE xyY to [0, 1] sRGB.
*
* @param x The x parameter.
* @param y The y parameter.
* @param Y The Y parameter.
* @param r Output parameter for the red component.
* @param g Output parameter for the green component.
* @param b Output parameter for the blue component.
*/
void libclut_model_ciexyy_to_srgb(double, double, double, double*, double*, double*);
/**
* Convert from CIE XYZ to CIE L*a*b*.
*
* @param X The X parameter.
* @param Y The Y parameter.
* @param Z The Z parameter.
* @param L Output parameter for the L* component.
* @param a Output parameter for the a* component.
* @param b Output parameter for the b* component.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void libclut_model_ciexyz_to_cielab(double, double, double, double*, double*, double*);
/**
* Convert from CIE L*a*b* to CIE XYZ.
*
* @param L The L* component.
* @param a The a component.
* @param b The b component.
* @param X Output parameter for the X parameter.
* @param Y Output parameter for the Y parameter.
* @param Z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void libclut_model_cielab_to_xiexyz(double, double, double, double*, double*, double*);
/**
* Convert the distance (∆E*_ab) between two [0, 1] sRGB colours.
*
* @param r1 The red component of the first colour.
* @param g1 The green component of the first colour.
* @param b1 The blue component of the first colour.
* @param r2 The red component of the second colour.
* @param g2 The green component of the second colour.
* @param b2 The blue component of the second colour.
* @return The difference.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__const__)))
double libclut_model_delta_e(double, double, double, double, double, double);
#endif