/**
* Copyright © 2016 Mattias Andrée <maandree@member.fsf.org>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef LIBCLUT_H
#define LIBCLUT_H
#include <stddef.h>
#include <string.h>
#include <math.h>
/* This is to avoid warnings about comparing double, These are only
* used when it is safe, for example to test whether optimisations
* are possible. { */
#if defined(__GNUC__) || defined(__clang__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
static inline int libclut_eq__(double a, double b) { return a == b; }
static inline int libclut_1__(double x) { return libclut_eq__(x, 1); }
static inline int libclut_0__(double x) { return libclut_eq__(x, 0); }
#if defined(__GNUC__) || defined(__clang__)
# pragma GCC diagnostic pop
#endif
/* } */
#if defined(__clang__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wdocumentation"
#endif
/**
* Apply contrast correction on the colour curves using sRGB.
*
* In this context, contrast is a measure of difference between
* the whitepoint and blackpoint, if the difference is 0 than
* they are both grey.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The contrast parameter for the red curve.
* @param g The contrast parameter for the green curve.
* @param b The contrast parameter for the blue curve.
*/
#define libclut_rgb_contrast(clut, max, type, r, g, b) \
do \
{ \
const double h__ = (double)5 / 10; \
if (!libclut_1__(r)) \
libclut__(clut, red, type, (LIBCLUT_VALUE - (max) * h__) * (r) + (max) * h__); \
if (!libclut_1__(g)) \
libclut__(clut, green, type, (LIBCLUT_VALUE - (max) * h__) * (g) + (max) * h__); \
if (!libclut_1__(b)) \
libclut__(clut, blue, type, (LIBCLUT_VALUE - (max) * h__) * (b) + (max) * h__); \
} \
while (0)
/**
* Apply contrast correction on the colour curves using CIE xyY.
*
* In this context, contrast is a measure of difference between
* the whitepoint and blackpoint, if the difference is 0 than
* they are both grey.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The contrast parameter for the red curve.
* @param g The contrast parameter for the green curve.
* @param b The contrast parameter for the blue curve.
*/
#define libclut_cie_contrast(clut, max, type, r, g, b) \
do \
{ \
const double h__ = (double)5 / 10; \
libclut_cie__(clut, max, type, libclut_eq__((r), (g)) && libclut_eq__((g), (b)), \
!libclut_1__(r), !libclut_1__(g), !libclut_1__(b), \
(Y__ - h__) * (r) + h__, (Y__ - h__) * (g) + h__, (Y__ - h__) * (b) + h__); \
} \
while (0)
/**
* Apply brightness correction on the colour curves using sRGB.
*
* In this context, brightness is a measure of the whiteness of the whitepoint.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The brightness parameter for the red curve.
* @param g The brightness parameter for the green curve.
* @param b The brightness parameter for the blue curve.
*/
#define libclut_rgb_brightness(clut, max, type, r, g, b) \
do \
{ \
if (!libclut_1__(r)) libclut__(clut, red, type, LIBCLUT_VALUE * (r)); \
if (!libclut_1__(g)) libclut__(clut, green, type, LIBCLUT_VALUE * (g)); \
if (!libclut_1__(b)) libclut__(clut, blue, type, LIBCLUT_VALUE * (b)); \
} \
while (0)
/**
* Apply brightness correction on the colour curves using CIE xyY.
*
* In this context, brightness is a measure of the whiteness of the whitepoint.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The brightness parameter for the red curve.
* @param g The brightness parameter for the green curve.
* @param b The brightness parameter for the blue curve.
*/
#define libclut_cie_brightness(clut, max, type, r, g, b) \
libclut_cie__(clut, max, type, libclut_eq__((r), (g)) && libclut_eq__((g), (b)), \
!libclut_1__(r), !libclut_1__(g), !libclut_1__(b), \
Y__ * (r), Y__ * (g), Y__ * (b))
/**
* Convert the curves from formatted in standard RGB to linear RGB.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_standard_to_linear1` is not undefined.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to convert the red colour curve.
* @param g Whether to convert the green colour curve.
* @param b Whether to convert the blue colour curve.
*/
#define libclut_linearise(clut, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (r) \
libclut__(clut, red, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \
if (g) \
libclut__(clut, green, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \
if (b) \
libclut__(clut, blue, type, m__ * libclut_model_standard_to_linear1(LIBCLUT_VALUE / m__)); \
} \
while (0)
/**
* Convert the curves from formatted in linear RGB to standard RGB.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut', or '-lm' if
* `libclut_model_linear_to_standard1` is not undefined.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to convert the red colour curve.
* @param g Whether to convert the green colour curve.
* @param b Whether to convert the blue colour curve.
*/
#define libclut_standardise(clut, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (r) \
libclut__(clut, red, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \
if (g) \
libclut__(clut, green, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \
if (b) \
libclut__(clut, blue, type, m__ * libclut_model_linear_to_standard1(LIBCLUT_VALUE / m__)); \
} \
while (0)
/**
* Apply gamma correction on the colour curves.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lm'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r The gamma parameter the red colour curve.
* @param g The gamma parameter the green colour curve.
* @param b The gamma parameter the blue colour curve.
*/
#define libclut_gamma(clut, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
if (!libclut_1__(r)) \
libclut__(clut, red, type, m__ * pow(LIBCLUT_VALUE / m__, 1 / (double)(r))); \
if (!libclut_1__(g)) \
libclut__(clut, green, type, m__ * pow(LIBCLUT_VALUE / m__, 1 / (double)(g))); \
if (!libclut_1__(b)) \
libclut__(clut, blue, type, m__ * pow(LIBCLUT_VALUE / m__, 1 / (double)(b))); \
} \
while (0)
/**
* Reverse the colour curves (negative image with gamma preservation.)
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* This parameter is not used, it is just a dummy, to unify
* the API with the other functions.
* @param type The data type used for each stop in the ramps.
* @param r Whether to invert the red colour curve.
* @param g Whether to invert the green colour curve.
* @param b Whether to invert the blue colour curve.
*/
#define libclut_negative(clut, max, type, r, g, b) \
do \
{ \
size_t i__, n__; \
type t__; \
if (r) \
for (i__ = 0, n__ = (clut)->red_size; i__ < (n__ >> 1); i__++) \
{ \
t__ = (clut)->red[i__]; \
(clut)->red[i__] = (clut)->red[n__ - i__ - 1]; \
(clut)->red[n__ - i__ - 1] = t__; \
} \
if (g) \
for (i__ = 0, n__ = (clut)->green_size; i__ < (n__ >> 1); i__++) \
{ \
t__ = (clut)->green[i__]; \
(clut)->green[i__] = (clut)->green[n__ - i__ - 1]; \
(clut)->green[n__ - i__ - 1] = t__; \
} \
if (b) \
for (i__ = 0, n__ = (clut)->blue_size; i__ < (n__ >> 1); i__++) \
{ \
t__ = (clut)->blue[i__]; \
(clut)->blue[i__] = (clut)->blue[n__ - i__ - 1]; \
(clut)->blue[n__ - i__ - 1] = t__; \
} \
} \
while (0)
/**
* Invert the colour curves (negative image with gamma invertion), using sRGB.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to invert the red colour curve.
* @param g Whether to invert the green colour curve.
* @param b Whether to invert the blue colour curve.
*/
#define libclut_rgb_invert(clut, max, type, r, g, b) \
do \
{ \
if (r) libclut__(clut, red, type, (max) - LIBCLUT_VALUE); \
if (g) libclut__(clut, green, type, (max) - LIBCLUT_VALUE); \
if (b) libclut__(clut, blue, type, (max) - LIBCLUT_VALUE); \
} \
while (0)
/**
* Invert the colour curves (negative image with gamma invertion), using CIE xyY.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to invert the red colour curve.
* @param g Whether to invert the green colour curve.
* @param b Whether to invert the blue colour curve.
*/
#define libclut_cie_invert(clut, max, type, r, g, b) \
libclut_cie__(clut, max, type, (r) && (g) && (b), r, g, b, 1 - Y__, 1 - Y__, 1 - Y__)
/**
* Apply S-curve correction on the colour curves.
* This is intended for fine tuning LCD monitors,
* 4.5 is good value start start testing at.
* You would probably like to use rgb_limits before
* this to adjust the blackpoint as that is the
* only way to adjust the blackpoint on many LCD
* monitors.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lm'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rp Pointer to the sigmoid parameter for the red curve. `NULL` for no adjustment.
* @param gp Pointer to the sigmoid parameter for the green curve. `NULL` for no adjustment.
* @param bp Pointer to the sigmoid parameter for the blue curve. `NULL` for no adjustment.
*/
#define libclut_sigmoid(clut, max, type, rp, gp, bp) \
do \
{ \
double *gcc_6_1_1_workaround, m__ = (double)(max); \
const double h__ = (double)5 / 10; \
gcc_6_1_1_workaround = rp; \
if (gcc_6_1_1_workaround) \
libclut_sigmoid__(clut, max, type, red); \
gcc_6_1_1_workaround = gp; \
if (gcc_6_1_1_workaround) \
libclut_sigmoid__(clut, max, type, green); \
gcc_6_1_1_workaround = bp; \
if (gcc_6_1_1_workaround) \
libclut_sigmoid__(clut, max, type, blue); \
} \
while (0)
/**
* Apply S-curve correction on the colour curves.
* This is intended for fine tuning LCD monitors,
* 4.5 is good value start start testing at.
* You would probably like to use rgb_limits before
* this to adjust the blackpoint as that is the
* only way to adjust the blackpoint on many LCD
* monitors.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lm'.
*
* Intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param channel The channel, must be either "red", "green", or "blue".
*/
#define libclut_sigmoid__(clut, max, type, channel) \
do \
{ \
double s__ = *gcc_6_1_1_workaround, l__; \
size_t i__; \
for (i__ = 0; i__ < (clut)->channel##_size; i__++) \
{ \
l__ = log(m__ / (clut)->channel[i__] - 1); \
if (isnan(l__) || isinf(l__)) \
l__ = 37.024483 * (isinf(l__) > 0 ? +1 : -1); \
(clut)->channel[i__] = (type)(m__ * (h__ - l__ / s__)); \
} \
} \
while (0)
/**
* Changes the blackpoint and the whitepoint, using sRGB.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rmin The red component value of the blackpoint.
* @param rmax The red component value of the whitepoint.
* @param gmin The green component value of the blackpoint.
* @param gmax The green component value of the whitepoint.
* @param bmin The blue component value of the blackpoint.
* @param bmax The blue component value of the whitepoint.
*/
#define libclut_rgb_limits(clut, max, type, rmin, rmax, gmin, gmax, bmin, bmax) \
do \
{ \
double diff__; \
if (!libclut_0__(rmin) || !libclut_1__(rmax)) \
{ \
diff__ = (double)(rmax) - (double)(rmin); \
libclut__(clut, red, type, LIBCLUT_VALUE / (double)(max) * diff__ + (rmin)); \
} \
if (!libclut_0__(gmin) || !libclut_1__(gmax)) \
{ \
diff__ = (double)(gmax) - (double)(gmin); \
libclut__(clut, green, type, LIBCLUT_VALUE / (double)(max) * diff__ + (gmin)); \
} \
if (!libclut_0__(bmin) || !libclut_1__(bmax)) \
{ \
diff__ = (double)(bmax) - (double)(bmin); \
libclut__(clut, blue, type, LIBCLUT_VALUE / (double)(max) * diff__ + (bmin)); \
} \
} \
while (0)
/**
* Changes the blackpoint and the whitepoint, using CIE xyY.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rmin The red component value of the blackpoint.
* @param rmax The red component value of the whitepoint.
* @param gmin The green component value of the blackpoint.
* @param gmax The green component value of the whitepoint.
* @param bmin The blue component value of the blackpoint.
* @param bmax The blue component value of the whitepoint.
*/
#define libclut_cie_limits(clut, max, type, rmin, rmax, gmin, gmax, bmin, bmax) \
do \
{ \
double rd__ = (rmax) - (rmin), gd__ = (gmax) - (gmin), bd__ = (bmax) - (bmin); \
libclut_cie__(clut, max, type, \
libclut_eq__((rmin), (gmin)) && libclut_eq__((gmin), (bmin)) && \
libclut_eq__((rmax), (gmax)) && libclut_eq__((gmax), (bmax)), \
!libclut_0__(rmin) || !libclut_1__(rmax), \
!libclut_0__(gmin) || !libclut_1__(gmax), \
!libclut_0__(bmin) || !libclut_1__(bmax), \
Y__ * rd__ + (rmin), Y__ * gd__ + (gmin), Y__ * bd__ + (bmin)); \
} \
while (0)
/**
* Manipulate the colour curves using a function on the sRGB colour space.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Function to manipulate the red colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param g Function to manipulate the green colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param b Function to manipulate the blue colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
*/
#define libclut_manipulate(clut, max, type, r, g, b) \
do \
{ \
double m__ = (double)(max); \
double (*gcc_6_1_1_workaround__)(double); \
gcc_6_1_1_workaround__ = r; \
if (gcc_6_1_1_workaround__) \
libclut__(clut, red, type, m__ * (gcc_6_1_1_workaround__)(LIBCLUT_VALUE / m__)); \
gcc_6_1_1_workaround__ = g; \
if (gcc_6_1_1_workaround__) \
libclut__(clut, green, type, m__ * (gcc_6_1_1_workaround__)(LIBCLUT_VALUE / m__)); \
gcc_6_1_1_workaround__ = b; \
if (gcc_6_1_1_workaround__) \
libclut__(clut, blue, type, m__ * (gcc_6_1_1_workaround__)(LIBCLUT_VALUE / m__)); \
} \
while (0)
/**
* Manipulate the colour curves using a function on the CIE xyY colour space.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Function to manipulate the red colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param g Function to manipulate the green colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
* @param b Function to manipulate the blue colour curve, should either
* be `NULL` or map a [0, 1] `double` to a [0, 1] `double`.
*/
#define libclut_cie_manipulate(clut, max, type, r, g, b) \
libclut_cie__(clut, max, type, (r) && (g) && (b), r, g, b, (r)(Y__), (g)(Y__), (b)(Y__))
/**
* Resets colour curvers to linear mappings.
* (Identity mapping if imaginged to map from [0, 1] to [0, 1].)
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to reset the red colour curve.
* @param g Whether to reset the green colour curve.
* @param b Whether to reset the blue colour curve.
*/
#define libclut_start_over(clut, max, type, r, g, b) \
do \
{ \
size_t i__; \
double m__, max__ = (double)(max); \
if (r) \
{ \
m__ = (double)((clut)->red_size - 1); \
for (i__ = 0; i__ < (clut)->red_size; i__++) \
(clut)->red[i__] = (type)(((double)i__ / m__) * max__); \
} \
if (g) \
{ \
m__ = (double)((clut)->green_size - 1); \
for (i__ = 0; i__ < (clut)->green_size; i__++) \
(clut)->green[i__] = (type)(((double)i__ / m__) * max__); \
} \
if (b) \
{ \
m__ = (double)((clut)->blue_size - 1); \
for (i__ = 0; i__ < (clut)->blue_size; i__++) \
(clut)->blue[i__] = (type)(((double)i__ / m__) * max__); \
} \
} \
while (0)
/**
* Clip colour curves to only map to values between the minimum and maximum.
* This should be done, before apply the curves, and before applying changes
* with limited domain.
*
* Values below 0 are set to 0, and values above `max` are set to `max`.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param r Whether to clip the red colour curve.
* @param g Whether to clip the green colour curve.
* @param b Whether to clip the blue colour curve.
*/
#define libclut_clip(clut, max, type, r, g, b) \
do \
{ \
if (r) libclut__(clut, red, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \
if (g) libclut__(clut, green, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \
if (b) libclut__(clut, blue, type, libclut_clip__(0, LIBCLUT_VALUE, max)); \
} \
while (0)
/**
* Truncates a value to fit a boundary.
*
* None of the parameter may have side-effects.
*
* Intended for internal use.
*
* @param min The minimum allowed value.
* @param val The current value.
* @param max The maximum allowed value.
* @return The value truncated into its boundary.
*/
#define libclut_clip__(min, val, max) \
(LIBCLUT_VALUE < (min) ? (min) : LIBCLUT_VALUE > (max) ? (max) : LIBCLUT_VALUE)
/**
* Emulates low colour resolution.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param rx The desired emulated red encoding resolution, 0 for unchanged.
* @param ry The desired emulated red output resolution, 0 for unchanged.
* @param gx The desired emulated green encoding resolution, 0 for unchanged.
* @param gy The desired emulated green output resolution, 0 for unchanged.
* @param bx The desired emulated blue encoding resolution, 0 for unchanged.
* @param by The desired emulated blue output resolution, 0 for unchanged.
*/
#define libclut_lower_resolution(clut, max, type, rx, ry, gx, gy, bx, by) \
do \
{ \
libclut_lower_resolution__(clut, red, max, type, rx, ry); \
libclut_lower_resolution__(clut, green, max, type, gx, gy); \
libclut_lower_resolution__(clut, blue, max, type, bx, by); \
} \
while (0)
/**
* Emulates low colour resolution of a channel.
*
* None of the parameter may have side-effects.
*
* Intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param channel The channel, must be either "red", "green", or "blue".
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param x The desired emulated encoding resolution, 0 for unchanged.
* @param y The desired emulated output resolution, 0 for unchanged.
*/
#define libclut_lower_resolution__(clut, channel, max, type, x, y) \
do \
if ((x) || (y)) \
{ \
size_t x__, y__, i__, n__ = (clut)->channel##_size; \
double xm__ = (double)((x) - 1), ym__ = (double)((y) - 1); \
double m__ = (double)(max), nm__ = (double)(n__ - 1); \
type c__[n__]; /* Do not use alloca! */ \
const double h__ = (double)5 / 10; \
for (i__ = 0; i__ < n__; i__++) \
{ \
if ((x__ = i__), (x)) \
{ \
x__ = (size_t)((double)i__ * (double)(x) / (double)n__); \
x__ = (size_t)((double)x__ * nm__ / xm__); \
} \
if (!(y)) \
c__[i__] = (clut)->channel[x__]; \
else \
{ \
y__ = (size_t)((double)((clut)->channel[x__]) / (max) * ym__ + h__); \
c__[i__] = (type)((double)y__ / ym__ * m__); \
} \
} \
memcpy((clut)->channel, c__, n__ * sizeof(type)); \
} \
while (0)
/**
* Translates a gamma ramp structure to another gamma ramp structure type.
*
* None of the parameter may have side-effects.
*
* @param dclut Pointer to the desired gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars `red_size`,
* `green_size`, and `blue_size`. Ramp structures from
* libgamma or libcoopgamma can be used.
* @param dmax The maximum value on each stop in the ramps in `dclut`.
* @param dtype The data type used for each stop in the ramps in `dclut`.
* @param sclut Pointer to the set gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars `red_size`,
* `green_size`, and `blue_size`. Ramp structures from
* libgamma or libcoopgamma can be used.
* @param smax The maximum value on each stop in the ramps in `sclut`.
* @param stype The data type used for each stop in the ramps in `sclut`.
* (Not actually used.)
*/
#define libclut_translate(dclut, dmax, dtype, sclut, smax, stype) \
do \
{ \
libclut_translate__(dclut, dmax, dtype, sclut, smax, stype, red); \
libclut_translate__(dclut, dmax, dtype, sclut, smax, stype, green); \
libclut_translate__(dclut, dmax, dtype, sclut, smax, stype, blue); \
} \
while (0)
/**
* Translates a gamma ramp structure to another gamma ramp structure type.
*
* None of the parameter may have side-effects.
*
* This is intended for internal use.
*
* @param dclut Pointer to the desired gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars `red_size`,
* `green_size`, and `blue_size`. Ramp structures from
* libgamma or libcoopgamma can be used.
* @param dmax The maximum value on each stop in the ramps in `dclut`.
* @param dtype The data type used for each stop in the ramps in `dclut`.
* @param sclut Pointer to the set gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars `red_size`,
* `green_size`, and `blue_size`. Ramp structures from
* libgamma or libcoopgamma can be used.
* @param smax The maximum value on each stop in the ramps in `sclut`.
* @param stype The data type used for each stop in the ramps in `sclut`.
* (Not actually used.)
* @param channel The channel, must be either "red", "green", or "blue".
*/
#define libclut_translate__(dclut, dmax, dtype, sclut, smax, stype, channel) \
do \
{ \
size_t di__, si__, sj__; \
size_t dn__ = (dclut)->channel##_size; \
size_t sn__ = (sclut)->channel##_size; \
double dm__ = (double)(dmax); \
double sm__ = (double)(smax); \
double smdm__ = sm__ / dm__; \
double x__, y__; \
if (dn__ == sn__) \
for (di__ = 0; di__ < dn__; di__++) \
{ \
y__ = (double)((sclut)->channel[si__]) * smdm__; \
(dclut)->channel[di__] = (dtype)y__; \
} \
else \
for (di__ = 0; di__ < dn__; di__++) \
{ \
x__ = di__ / (dn__ - 1) * (sn__ - 1); \
si__ = (size_t)(x__); \
sj__ = si__ + (si__ != sn__); \
x__ -= (double)si__; \
y__ = (double)((sclut)->channel[si__]) * (1 - x__); \
y__ += (double)((sclut)->channel[sj__]) * (x__); \
y__ *= smdm__; \
(dclut)->channel[di__] = (dtype)y__; \
} \
} \
while (0)
/**
* Applies a filter or calibration.
*
* None of the parameter may have side-effects.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param filter Same as `clut`, but for the filter to apply.
* @param fmax Same as `max`, but for the filter to apply.
* @param ftype Same as `type`, but for the filter to apply. (Not actually used).
* @param r Whether to apply the filter for the red curve.
* @param g Whether to apply the filter for the green curve.
* @param b Whether to apply the filter for the blue curve.
*/
#define libclut_apply(clut, max, type, filter, fmax, ftype, r, g, b) \
do \
{ \
if (r) libclut_apply__(clut, max, type, filter, fmax, ftype, red); \
if (g) libclut_apply__(clut, max, type, filter, fmax, ftype, green); \
if (b) libclut_apply__(clut, max, type, filter, fmax, ftype, blue); \
} \
while (0)
/**
* Applies a filter or calibration for one channel.
*
* None of the parameter may have side-effects.
*
* Intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param filter Same as `clut`, but for the filter to apply.
* @param fmax Same as `max`, but for the filter to apply.
* @param ftype Same as `type`, but for the filter to apply. (Not actually used).
* @param channel The channel, must be either "red", "green", or "blue".
*/
#define libclut_apply__(clut, max, type, filter, fmax, ftype, channel) \
do \
{ \
size_t i__, rn__ = (clut)->channel##_size, fn__ = (filter)->channel##_size - 1; \
double x__, rm__ = (double)(max), m__ = (double)(max) / (double)(fmax); \
for (i__ = 0; i__ < rn__; i__++) \
{ \
x__ = (double)((clut)->channel[i__]) / rm__ * (double)fn__; \
(clut)->channel[i__] = (type)((double)((filter)->channel[(size_t)x__]) * m__); \
} \
} \
while (0)
/**
* Applies a filter or calibration, using CIE xyY.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param filter Same as `clut`, but for the filter to apply.
* @param fmax Same as `max`, but for the filter to apply.
* @param ftype Same as `type`, but for the filter to apply. (Not actually used).
* @param r Whether to apply the filter for the red curve.
* @param g Whether to apply the filter for the green curve.
* @param b Whether to apply the filter for the blue curve.
*/
#define libclut_cie_apply(clut, max, type, filter, fmax, ftype, r, g, b) \
do \
{ \
size_t rfn__ = (filter)->red_size - 1, gfn__ = (filter)->green_size - 1; \
size_t bfn__ = (filter)->blue_size - 1, x__; \
size_t rm__ = (double)(max), fm__ = (double)(fmax); \
libclut_cie__(clut, max, type, 0, r, g, b, \
(x__ = (size_t)(Y__ / rm__ * rfn__), (double)((filter)->red[x__]) / fm__), \
(x__ = (size_t)(Y__ / rm__ * gfn__), (double)((filter)->green[x__]) / fm__), \
(x__ = (size_t)(Y__ / rm__ * bfn__), (double)((filter)->blue[x__]) / fm__)); \
} \
while (0)
/**
* Modify a ramp.
*
* None of the parameter may have side-effects.
*
* This is intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have and array
* named `channel` and a scalar named `channel` followed
* by "_size".
* @param channel The channel, must be either "red", "green", or "blue".
* @param type The data type used for each stop in the ramps.
* @param expr Expression that evalutes the value a stop should have.
* It can use the variable `LIBCLUT_VALUE` to get the
* current value of the stop.
*/
#define libclut__(clut, channel, type, expr) \
do \
{ \
size_t i__, n__ = (clut)->channel##_size; \
type LIBCLUT_VALUE; \
for (i__ = 0; i__ < n__; i__++) \
{ \
LIBCLUT_VALUE = (clut)->channel[i__]; \
(clut)->channel[i__] = (type)(expr); \
} \
} \
while (0)
/**
* Modify a ramp set in CIE xyY.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* This is intended for internal use.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param utest Whether all channels can be modified at the same time.
* This test does not have to include the ramp size.
* @param rtest Whether the red channel have to be modified.
* @param gtest Whether the green channel have to be modified.
* @param btest Whether the blue channel have to be modified.
* @param rexpr Expression calculating the intensity of the red channel.
* The current value is stored in `Y__`.
* @param gexpr Expression calculating the intensity of the green channel.
* The current value is stored in `Y__`.
* @param bexpr Expression calculating the intensity of the blue channel.
* The current value is stored in `Y__`.
*/
#define libclut_cie__(clut, max, type, utest, rtest, gtest, btest, rexpr, gexpr, bexpr) \
do \
{ \
size_t rn__ = (clut)->red_size; \
size_t gn__ = (clut)->green_size; \
size_t bn__ = (clut)->blue_size; \
size_t i__; \
double x__, y__, Y__, r__, g__, b__; \
double m__ = (double)(max); \
type* rs__ = (clut)->red; \
type* gs__ = (clut)->green; \
type* bs__ = (clut)->blue; \
if ((rn__ == gn__) && (gn__ == bn__) && (utest)) \
{ \
if (!(rtest)) \
break; \
for (i__ = 0; i__ < rn__; i__++) \
{ \
libclut_model_srgb_to_ciexyy(rs__[i__] / m__, gs__[i__] / m__, \
bs__[i__] / m__, &x__, &y__, &Y__); \
libclut_model_ciexyy_to_srgb(x__, y__, rexpr, &r__, &g__, &b__); \
rs__[i__] = (type)(r__ * m__); \
gs__[i__] = (type)(g__ * m__); \
bs__[i__] = (type)(b__ * m__); \
} \
} \
else if ((rn__ == gn__) && (gn__ == bn__)) \
{ \
if (!(rtest) && !(gtest) && !(btest)) \
break; \
for (i__ = 0; i__ < rn__; i__++) \
{ \
libclut_model_srgb_to_ciexyy(rs__[i__] / m__, gs__[i__] / m__, \
bs__[i__] / m__, &x__, &y__, &Y__); \
if (rtest) \
{ \
libclut_model_ciexyy_to_srgb(x__, y__, rexpr, &r__, &g__, &b__); \
rs__[i__] = (type)(r__ * m__); \
} \
if (gtest) \
{ \
libclut_model_ciexyy_to_srgb(x__, y__, gexpr, &r__, &g__, &b__); \
gs__[i__] = (type)(g__ * m__); \
} \
if (btest) \
{ \
libclut_model_ciexyy_to_srgb(x__, y__, nexpr, &r__, &g__, &b__); \
bs__[i__] = (type)(b__ * m__); \
} \
} \
} \
else \
{ \
if (rtest) \
for (i__ = 0; i__ < rn__; i__++) \
libclut_cie___(clut, max, type, rexpr, i__, \
libclut_i__(i__, rn__, gn__), \
libclut_i__(i__, rn__, bn__)); \
if (gtest) \
for (i__ = 0; i__ < rn__; i__++) \
libclut_cie___(clut, max, type, gexpr, \
libclut_i__(i__, gn__, rn__), i__, \
libclut_i__(i__, gn__, bn__)); \
if (btest) \
for (i__ = 0; i__ < rn__; i__++) \
libclut_cie___(clut, max, type, bexpr, i__, \
libclut_i__(i__, bn__, rn__), \
libclut_i__(i__, bn__, gn__), i__); \
} \
} \
while (0)
/**
* Modify a ramp stop in CIE xyY.
*
* None of the parameter may have side-effects.
*
* Requires linking with '-lclut'.
*
* This is intended for internal use.
* Assumes the existence of variables defined in `libclut_cie__`.
*
* @param clut Pointer to the gamma ramps, must have the arrays
* `red`, `green`, and `blue`, and the scalars
* `red_size`, `green_size`, and `blue_size`. Ramp
* structures from libgamma or libcoopgamma can be used.
* @param max The maximum value on each stop in the ramps.
* @param type The data type used for each stop in the ramps.
* @param c Either "r" for red, "g" for green, or "b" for blue.
* @param expr Expression calculating the intensity of the channel.
* @param ri The index of the stop translated to the red channel.
* @param gi The index of the stop translated to the green channel.
* @param bi The index of the stop translated to the blue channel.
*/
#define libclut_cie___(clut, max, type, c, expr, ri, gi, bi) \
do \
{ \
for (i__ = 0; i__ < c##n__; i__++) \
{ \
libclut_model_srgb_to_ciexyy(rs__[(ri)] / m__, gs__[(gi)] / m__, \
bs__[(bi)] / m__, &x__, &y__, &Y__); \
libclut_model_ciexyy_to_srgb(x__, y__, expr, &r__, &g__, &b__); \
c##s__[i__] = (type)(c##__ * m__); \
} \
} \
while (0)
/**
* Translate an index from one channel to another.
*
* @param i The index in the input channel.
* @param in The size of the input channel.
* @param out The size of the output channel.
* @return The index in the output channel.
*/
#define libclut_i__(i, in, out) \
(size_t)((double)(i) * (double)(out) / (double)(in))
#if defined(__GNUC__) && !defined(__clang__)
# define LIBCLUT_GCC_ONLY__(x) x
#else
# define LIBCLUT_GCC_ONLY__(x) /* do nothing */
#endif
/**
* Convert one component from [0, 1] linear RGB to [0, 1] sRGB.
*
* If the macro variant is used, the argument must not have
* any side-effects. The macro variant requires linking with
* '-lm'.
*
* @param c The linear RGB value.
* @return Corresponding sRGB value.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__const__, __leaf__)))
double (libclut_model_linear_to_standard1)(double);
#define libclut_model_linear_to_standard1(c) \
(((double)(c) <= 0.0031308) ? (12.92 * (double)(c)) : ((1.055) * pow((double)(c), 1 / 2.4) - 0.055))
/**
* Convert [0, 1] linear RGB to [0, 1] sRGB.
*
* The macro variant requires linking with '-lm',
* if the 'libclut_model_linear_to_standard1' is defined,
* otherwise it requires linking with '-lclut'.
*
* @param r Pointer to the linear red component,
* and output parameter for the red component.
* @param g Pointer to the linear green component,
* and output parameter for the green component.
* @param b Pointer to the linear blue component,
* and output parameter for the blue component.
*/
void (libclut_model_linear_to_standard)(double*, double*, double*);
#define libclut_model_linear_to_standard(r, g, b) \
do \
{ \
double *r__ = (r), *g__ = (g), *b__ = (b); \
*r__ = libclut_model_linear_to_standard1(*r__); \
*g__ = libclut_model_linear_to_standard1(*g__); \
*b__ = libclut_model_linear_to_standard1(*b__); \
} \
while (0)
/**
* Convert one component from [0, 1] sRGB to [0, 1] linear RGB.
*
* If the macro variant is used, the argument must not have
* any side-effects. The macro variant requires linking with
* '-lm'.
*
* @param c The sRGB value.
* @return Corresponding linear RGB value.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__const__, __leaf__)))
double (libclut_model_standard_to_linear1)(double);
#define libclut_model_standard_to_linear1(c) \
(((double)(c) <= 0.04045) ? ((double)(c) / 12.92) : pow(((double)(c) + 0.055) / 1.055, 2.4))
/**
* Convert [0, 1] sRGB to [0, 1] linear RGB.
*
* The macro variant requires linking with '-lm',
* if the 'libclut_model_standard_to_linear1' is defined,
* otherwise it requires linking with '-lclut'.
*
* @param r Pointer to the red component, and output
* parameter for the linear red component.
* @param g Pointer to the green component, and output
* parameter for the linear green component.
* @param b Pointer to the blue component, and output
* parameter for the linear blue component.
*/
void (libclut_model_standard_to_linear)(double*, double*, double*);
#define libclut_model_standard_to_linear(r, g, b) \
do \
{ \
double *r__ = (r), *g__ = (g), *b__ = (b); \
*r__ = libclut_model_standard_to_linear1(*r__); \
*g__ = libclut_model_standard_to_linear1(*g__); \
*b__ = libclut_model_standard_to_linear1(*b__); \
} \
while (0)
/**
* Convert CIE xyY to CIE XYZ.
*
* @param x The x parameter.
* @param y The y parameter.
* @param Y The Y parameter. This is also the Y (middle) parameter for the CIE XYZ colour.
* @param X Output parameter for the X parameter.
* @param Z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ciexyy_to_ciexyz)(double, double, double, double*, double*);
#define libclut_model_ciexyy_to_ciexyz(x, y, Y, X, Z) \
do \
{ \
double x__ = (x), y__ = (y), Y__ = (Y), *X__ = (X), *Z__ = (Z); \
*X__ = libclut_0__(y__) ? Y__ : (Y__ * x__ / y__); \
*Z__ = libclut_0__(y__) ? Y__ : (Y__ * (1 - x__ - y__) / y__); \
} \
while (0)
/**
* Convert CIE XYZ to CIE xyY.
*
* @param X The X parameter.
* @param Y The Y parameter. This is also the Y (last) parameter for the CIE xyY colour.
* @param Z The Z parameter.
* @param x Output parameter for the x parameter.
* @param y Output parameter for the y parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ciexyz_to_ciexyy)(double, double, double, double*, double*);
#define libclut_model_ciexyz_to_ciexyy(X, Y, Z, x, y) \
do \
{ \
double X__ = (X), Y__ = (Y), Z__ = (Z), *x__ = (x), *y__ = (y); \
double s__ = X__ + Y__ + Z__; \
if (libclut_0__(s__)) \
*x__ = *y__ = 0; \
else \
*x__ = X__ / s__, *y__ = Y__ / s__; \
} \
while (0)
/**
* Convert CIE XYZ to [0, 1] linear RGB.
*
* @param X The X parameter.
* @param Y The Y parameter.
* @param Z The Z parameter.
* @param r Output parameter for the red component.
* @param g Output parameter for the green component.
* @param b Output parameter for the blue component.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ciexyz_to_linear)(double, double, double, double*, double*, double*);
#define libclut_model_ciexyz_to_linear(X, Y, Z, r, g, b) \
do \
{ \
double X__ = (X), Y__ = (Y), Z__ = (Z); \
*(r) = ( 3.2404500 * X__) + (-1.537140 * Y__) + (-0.4985320 * Z__); \
*(g) = (-0.9692660 * X__) + ( 1.876010 * Y__) + ( 0.0415561 * Z__); \
*(b) = ( 0.0556434 * X__) + (-0.204026 * Y__) + ( 1.0572300 * Z__); \
} \
while (0)
/**
* Convert [0, 1] linear RGB to CIE XYZ.
*
* @param r The red component.
* @param g The green component.
* @param b The blue component.
* @param X Output parameter for the X parameter.
* @param Y Output parameter for the Y parameter.
* @param Z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_linear_to_ciexyz)(double, double, double, double*, double*, double*);
#define libclut_model_linear_to_ciexyz(r, g, b, X, Y, Z) \
do \
{ \
double r__ = (r), g__ = (g), b__ = (b); \
*(X) = (0.4124564 * r__) + (0.3575761 * g__) + (0.1804375 * b__); \
*(Y) = (0.2126729 * r__) + (0.7151522 * g__) + (0.0721750 * b__); \
*(Z) = (0.0193339 * r__) + (0.1191920 * g__) + (0.9503041 * b__); \
} \
while (0)
/**
* Convert [0, 1] linear RGB to CIE xyY.
*
* The macro variant requires linking with '-lclut'
* if any of `libclut_model_ciexyz_to_ciexyy`,
* `libclut_model_linear_to_ciexyz`, and
* `libclut_model_standard_to_linear` are undefined.
* The macro variant requires linking with '-lm' if
* neither `libclut_model_standard_to_linear` nor
* `libclut_model_standard_to_linear1` are undefined.
*
* @param r The red component.
* @param g The green component.
* @param b The blue component.
* @param x Output parameter for the x parameter.
* @param y Output parameter for the y parameter.
* @param Y Output parameter for the Y parameter.
*/
void (libclut_model_srgb_to_ciexyy)(double, double, double, double*, double*, double*);
#define libclut_model_srgb_to_ciexyy(r, g, b, x, y, Y) \
do \
{ \
double r___ = (r), g___ = (g), b___ = (b); \
double *x___ = (x), *y___ = (y), *Y___ = (Y); \
double X___, Z___; \
libclut_model_standard_to_linear(&r___, &g___, &b___); \
libclut_model_linear_to_ciexyz(r___, g___, b___, &X___, Y___, &Z___); \
libclut_model_ciexyz_to_ciexyy(X___, *Y___, Z___, x___, y___); \
} \
while (0)
/**
* Convert CIE xyY to [0, 1] sRGB.
*
* The macro variant requires linking with '-lclut'
* if any of `libclut_model_ciexyy_to_ciexyz`,
* `libclut_model_ciexyz_to_linear`, and
* `libclut_model_linear_to_standard` are undefined.
* The macro variant requires linking with '-lm' if
* neither `libclut_model_linear_to_standard` nor
* `libclut_model_linear_to_standard1` are undefined.
*
* @param x The x parameter.
* @param y The y parameter.
* @param Y The Y parameter.
* @param r Output parameter for the red component.
* @param g Output parameter for the green component.
* @param b Output parameter for the blue component.
*/
void (libclut_model_ciexyy_to_srgb)(double, double, double, double*, double*, double*);
#define libclut_model_ciexyy_to_srgb(x, y, Y, r, g, b) \
do \
{ \
double x___ = (x), y___ = (y), Y___ = (Y); \
double *r___ = (r), *g___ = (g), *b___ = (b); \
double X___, Z___; \
libclut_model_ciexyy_to_ciexyz(x___, y___, Y___, &X___, &Z___); \
libclut_model_ciexyz_to_linear(X___, Y___, Z___, r___, g___, b___); \
libclut_model_linear_to_standard(r___, g___, b___); \
} \
while(0)
/**
* Convert from CIE XYZ to CIE L*a*b*.
*
* The macro variant requires linking with '-lm'.
*
* @param X The X parameter.
* @param Y The Y parameter.
* @param Z The Z parameter.
* @param L Output parameter for the L* component.
* @param a Output parameter for the a* component.
* @param b Output parameter for the b* component.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_ciexyz_to_cielab)(double, double, double, double*, double*, double*);
#define libclut_model_ciexyz_to_cielab(X, Y, Z, L, a, b) \
do \
{ \
double X__ = (X), Y__ = (Y), Z__ = (Z); \
X__ /= 0.95047, Z__ /= 1.08883; \
X__ = LIBCLUT_MODEL_CIEXYZ_TO_CIELAB__(X__); \
Y__ = LIBCLUT_MODEL_CIEXYZ_TO_CIELAB__(Y__); \
Z__ = LIBCLUT_MODEL_CIEXYZ_TO_CIELAB__(Z__); \
*(L) = 116 * Y__ - 16; \
*(a) = 500 * (X__ - Y__); \
*(b) = 200 * (Y__ - Z__); \
} \
while (0)
#define LIBCLUT_MODEL_CIEXYZ_TO_CIELAB__(C) \
(((C) > 0.00885642) ? pow((C), 1.0 / 3) : ((7.78 + 703.0 / 99900) * (C) + 0.1379310))
/**
* Convert from CIE L*a*b* to CIE XYZ.
*
* @param L The L* component.
* @param a The a* component.
* @param b The b* component.
* @param X Output parameter for the X parameter.
* @param Y Output parameter for the Y parameter.
* @param Z Output parameter for the Z parameter.
*/
LIBCLUT_GCC_ONLY__(__attribute__((__leaf__)))
void (libclut_model_cielab_to_ciexyz)(double, double, double, double*, double*, double*);
#define libclut_model_cielab_to_ciexyz(L, a, b, X, Y, Z) \
do \
{ \
double L__ = (L), a__ = (a), b__ = (b); \
double *X__ = (X), *Y__ = (Y), *Z__ = (Z); \
*Y__ = (L__ + 16) / 116; \
*X__ = a__ / 500 + *Y__; \
*Z__ = *Y__ - b__ / 200; \
*X__ = LIBCLUT_MODEL_CIELAB_TO_CIEXYZ__(*X__) * 0.95047; \
*Y__ = LIBCLUT_MODEL_CIELAB_TO_CIEXYZ__(*Y__); \
*Z__ = LIBCLUT_MODEL_CIELAB_TO_CIEXYZ__(*Z__) * 1.08883; \
} \
while (0)
#define LIBCLUT_MODEL_CIELAB_TO_CIEXYZ__(C) \
(((C)*(C)*(C) > 0.00885642) ? ((C)*(C)*(C)) : (((C) - 0.1379310) / (7.78 + 703.0 / 99900)))
#if defined(__clang__)
# pragma GCC diagnostic pop
#endif
#endif