aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
Diffstat (limited to '')
-rw-r--r--hungarian.c706
1 files changed, 706 insertions, 0 deletions
diff --git a/hungarian.c b/hungarian.c
new file mode 100644
index 0000000..7171cf3
--- /dev/null
+++ b/hungarian.c
@@ -0,0 +1,706 @@
+#include <stdio.h>
+#include <stdlib.h>
+
+
+#define cell long
+#define CELL_STR "%li"
+
+#define llong long long
+#define byte char
+#define boolean long
+#define null 0
+#define true 1
+#define false 0
+
+
+
+//new cell[X]
+#define new_cells(X) new_longs(X)
+
+//new boolean[X]
+#define new_booleans(X) new_longs(X)
+
+//new byte[X]
+#define new_bytes(X) malloc(X)
+
+//new llong[X]
+#define new_llongs(X) malloc((X) << 3)
+
+//new long[X]
+#if !(defined __LP64__ || defined __LLP64__)
+ #define new_longs(X) malloc((X) << 2) /*32-bit*/
+#else
+ #define new_longs(X) malloc((X) << 3) /*64-bit*/
+#endif
+
+//new float[X]
+#define new_floats(X) malloc((X) << 2)
+
+//new double[X]
+#define new_doubles(X) malloc((X) << 3)
+
+//new ?[][X]
+#define new_arrays(X) new_longs(X)
+
+
+#ifdef DEBUG
+ #define debug(X) fprintf(stderr, "\e[31m%s\e[m\n", X)
+#else
+ #define debug(X)
+#endif
+
+
+
+
+/**
+ * Cell marking: none
+ */
+#define UNMARKED 0L
+
+/**
+ * Cell marking: marked
+ */
+#define MARKED 1L
+
+/**
+ * Cell marking: prime
+ */
+#define PRIME 2L
+
+
+
+/**
+ * Bit set, a set of fixed number of bits/booleans
+ */
+typedef struct
+{
+ /**
+ * The set of all limbs, a limb consist of 64 bits
+ */
+ cell* limbs;
+
+ /**
+ * Singleton array with the index of the first non-zero limb
+ */
+ long* first;
+
+ /**
+ * Array the the index of the previous non-zero limb for echo limb
+ */
+ long* prev;
+
+ /**
+ * Array the the index of the next non-zero limb for echo limb
+ */
+ long* next;
+
+} BitSet;
+
+
+
+long** kuhn_match(cell** table, long n, long m);
+void kuhn_reduceRows(cell** t, long n, long m);
+byte** kuhn_mark(cell** t, long n, long m);
+boolean kuhn_isDone(byte** marks, boolean* colCovered, long n, long m);
+long* kuhn_findPrime(cell** t, byte** marks, boolean* rowCovered, boolean* colCovered, long n, long m);
+void kuhn_altMarks(byte** marks, long* altRow, long* altCol, long* colMarks, long* rowPrimes, long* prime, long n, long m);
+void kuhn_addAndSubtract(cell** t, boolean* rowCovered, boolean* colCovered, long n, long m);
+long** kuhn_assign(byte** marks, long n, long m);
+
+BitSet new_BitSet(long size);
+void BitSet_set(BitSet this, long i);
+void BitSet_unset(BitSet this, long i);
+long BitSet_any(BitSet this);
+
+long lb(llong x);
+
+
+
+void print(cell** t, long n, long m, long** assignment);
+
+int main(int argc, char** argv)
+{
+ unsigned a, d;
+ asm("cpuid");
+ asm volatile("rdtsc" : "=a" (a), "=d" (d));
+ srand(((llong)a) | (((llong)d) << 32LL));
+
+
+ long n = 10, m = 15;
+
+ long i;
+ cell** t = new_arrays(n);
+ cell** table = new_arrays(n);
+ long j;
+ if (argc < 2)
+ for (i = 0; i < n; i++)
+ {
+ *(t + i) = new_llongs(m);
+ *(table + i) = new_llongs(m);
+ for (j = 0; j < m; j++)
+ *(*(table + i) + j) = *(*(t + i) + j) = (cell)(random() & 63);
+ }
+ else
+ {
+ long x;
+ scanf("%li", &n);
+ scanf("%li", &m);
+ t = new_arrays(n);
+ table = new_arrays(n);
+ for (i = 0; i < n; i++)
+ {
+ *(t + i) = new_llongs(m);
+ *(table + i) = new_llongs(m);
+ for (j = 0; j < m; j++)
+ {
+ scanf(CELL_STR, &x);
+ *(*(table + i) + j) = *(*(t + i) + j) = x;
+ }
+ }
+ }
+
+ //kuhn_match(table, n, m);
+
+ printf("\nInput:\n\n");
+ print(t, n, m, null);
+
+ long** assignment = kuhn_match(table, n, m);
+ printf("\nOutput:\n\n");
+ print(t, n, m, assignment);
+
+ cell sum = 0;
+ for (i = 0; i < n; i++)
+ sum += *(*(t + *(*(assignment + i) + 0)) + *(*(assignment + i) + 1));
+ printf("\n\nSum: %li\n\n", sum);
+
+ return 0;
+}
+
+void print(cell** t, long n, long m, long** assignment)
+{
+ long i, j;
+
+ long** assigned = new_arrays(n);
+ for (i = 0; i < n; i++)
+ {
+ *(assigned + i) = new_longs(m);
+ for (j = 0; j < m; j++)
+ *(*(assigned + i) + j) = 0;
+ }
+ if (assignment != null)
+ for (i = 0; i < n; i++)
+ (*(*(assigned + **(assignment + i)) + *(*(assignment + i) + 1)))++;
+
+ for (i = 0; i < n; i++)
+ {
+ printf(" ");
+ for (j = 0; j < m; j++)
+ {
+ if (*(*(assigned + i) + j))
+ printf("\e[%lim", 30 + *(*(assigned + i) + j));
+ printf("%5li%s\e[m ", (cell)(*(*(t + i) + j)), (*(*(assigned + i) + j) ? "^" : " "));
+ }
+ printf("\n\n");
+ }
+}
+
+
+
+/**
+ * Calculates an optimal bipartite minimum weight matching using an
+ * O(n³)-time implementation of The Hungarian Algorithm, also known
+ * as Kuhn's Algorithm. This implemention is restricted to square
+ * tables.
+ *
+ * @param table The table in which to perform the matching
+ * @param n The dimension of the table
+ * @return The optimal assignment, an array of row–coloumn pairs
+ */
+long** kuhn_match(cell** table, long n, long m)
+{
+ long i;
+
+ /* not copying table since it will only be used once */
+
+ kuhn_reduceRows(table, n, m);
+ byte** marks = kuhn_mark(table, n, m);
+
+ boolean* rowCovered = new_booleans(n);
+ boolean* colCovered = new_booleans(m);
+ for (i = 0; i < n; i++)
+ {
+ *(rowCovered + i) = false;
+ *(colCovered + i) = false;
+ }
+ for (i = n; i < m; i++)
+ *(colCovered + i) = false;
+
+ long* altRow = new_longs(n * m);
+ long* altCol = new_longs(n * m);
+
+ long* rowPrimes = new_longs(n);
+ long* colMarks = new_longs(m);
+
+ long* prime;
+
+ for (;;)
+ {
+ if (kuhn_isDone(marks, colCovered, n, m))
+ break;
+
+ for (;;)
+ {
+ prime = kuhn_findPrime(table, marks, rowCovered, colCovered, n, m);
+ if (prime != null)
+ {
+ kuhn_altMarks(marks, altRow, altCol, colMarks, rowPrimes, prime, n, m);
+ for (i = 0; i < n; i++)
+ {
+ *(rowCovered + i) = false;
+ *(colCovered + i) = false;
+ }
+ for (i = n; i < m; i++)
+ *(colCovered + i) = false;
+ break;
+ }
+ kuhn_addAndSubtract(table, rowCovered, colCovered, n, m);
+ }
+ }
+
+ return kuhn_assign(marks, n, m);
+}
+
+
+/**
+ * Reduces the values on each rows so that, for each row, the
+ * lowest cells value is zero, and all cells' values is decrease
+ * with the same value [the minium value in the row].
+ *
+ * @param t The table in which to perform the reduction
+ * @param n The table's height
+ * @param m The table's width
+ */
+void kuhn_reduceRows(cell** t, long n, long m)
+{
+ long i, j;
+ cell min;
+ cell* ti;
+ for (i = 0; i < n; i++)
+ {
+ ti = *(t + i);
+ min = *ti;
+ for (j = 1; j < m; j++)
+ if (min > *(ti + j))
+ min = *(ti + j);
+
+ for (j = 0; j < m; j++)
+ *(ti + j) -= min;
+ }
+}
+
+
+/**
+ * Create a matrix with marking of cells in the table whose
+ * value is zero [minimal for the row]. Each marking will
+ * be on an unique row and an unique column.
+ *
+ * @param t The table in which to perform the reduction
+ * @param n The table's height
+ * @param m The table's width
+ * @return A matrix of markings as described in the summary
+ */
+byte** kuhn_mark(cell** t, long n, long m)
+{
+ long i, j;
+ byte** marks = new_arrays(n);
+ byte* marksi;
+ for (i = 0; i < n; i++)
+ {
+ marksi = *(marks + i) = new_bytes(m);
+ for (j = 0; j < m; j++)
+ *(marksi + j) = UNMARKED;
+ }
+
+ boolean* rowCovered = new_booleans(n);
+ boolean* colCovered = new_booleans(m);
+ for (i = 0; i < n; i++)
+ {
+ *(rowCovered + i) = false;
+ *(colCovered + i) = false;
+ }
+ for (i = 0; i < m; i++)
+ *(colCovered + i) = false;
+
+ for (i = 0; i < n; i++)
+ for (j = 0; j < m; j++)
+ if ((!*(rowCovered + i)) && (!*(colCovered + j)) && (*(*(t + i) + j) == 0))
+ {
+ *(*(marks + i) + j) = MARKED;
+ *(rowCovered + i) = true;
+ *(colCovered + j) = true;
+ }
+
+ return marks;
+}
+
+
+/**
+ * Determines whether the marking is complete, that is
+ * if each row has a marking which is on a unique column.
+ *
+ * @param marks The marking matrix
+ * @param colCovered An array which tells whether a column is covered
+ * @param n The table's height
+ * @param m The table's width
+ * @return Whether the marking is complete
+ */
+boolean kuhn_isDone(byte** marks, boolean* colCovered, long n, long m)
+{
+ long i, j;
+ for (j = 0; j < m; j++)
+ for (i = 0; i < n; i++)
+ if (*(*(marks + i) + j) == MARKED)
+ {
+ *(colCovered + j) = true;
+ break;
+ }
+
+ long count = 0;
+ for (j = 0; j < m; j++)
+ if (*(colCovered + j))
+ count++;
+
+ return count == n;
+}
+
+
+/**
+ * Finds a prime
+ *
+ * @param t The table
+ * @param marks The marking matrix
+ * @param rowCovered Row cover array
+ * @param colCovered Column cover array
+ * @param n The table's height
+ * @param m The table's width
+ * @return The row and column of the found print, <code>null</code> will be returned if none can be found
+ */
+long* kuhn_findPrime(cell** t, byte** marks, boolean* rowCovered, boolean* colCovered, long n, long m)
+{
+ long i, j;
+ BitSet zeroes = new_BitSet(n * n);
+
+ for (i = 0; i < n; i++)
+ if (!*(rowCovered + i))
+ for (j = 0; j < m; j++)
+ if ((!*(colCovered + j)) && (*(*(t + i) + j) == 0))
+ BitSet_set(zeroes, i * m + j);
+
+ long p, row, col;
+ boolean markInRow;
+
+ for (;;)
+ {
+ p = BitSet_any(zeroes);
+ if (p < 0)
+ return null;
+
+ row = p / m;
+ col = p % m;
+
+ *(*(marks + row) + col) = PRIME;
+
+ markInRow = false;
+ for (j = 0; j < m; j++)
+ if (*(*(marks + row) + j) == MARKED)
+ {
+ markInRow = true;
+ col = j;
+ }
+
+ if (markInRow)
+ {
+ *(rowCovered + row) = true;
+ *(colCovered + col) = false;
+
+ for (i = 0; i < n; i++)
+ if ((*(*(t + i) + col) == 0) && (row != i))
+ {
+ if ((!*(rowCovered + i)) && (!*(colCovered + col)))
+ BitSet_set(zeroes, i * m + col);
+ else
+ BitSet_unset(zeroes, i * m + col);
+ }
+
+ for (j = 0; j < m; j++)
+ if ((*(*(t + row) + j) == 0) && (col != j))
+ {
+ if ((!*(rowCovered + row)) && (!*(colCovered + j)))
+ BitSet_set(zeroes, row * m + j);
+ else
+ BitSet_unset(zeroes, row * m + j);
+ }
+
+ if ((!*(rowCovered + row)) && (!*(colCovered + col)))
+ BitSet_set(zeroes, row * m + col);
+ else
+ BitSet_unset(zeroes, row * m + col);
+ }
+ else
+ {
+ long* rc = new_longs(2);
+ *rc = row;
+ *(rc + 1) = col;
+ return rc;
+ }
+ }
+}
+
+
+/**
+ * Removes all prime marks and modifies the marking
+ *
+ * @param marks The marking matrix
+ * @param altRow Marking modification path rows
+ * @param altCol Marking modification path columns
+ * @param colMarks Markings in the columns
+ * @param rowPrimes Primes in the rows
+ * @param prime The last found prime
+ * @param n The table's height
+ * @param m The table's width
+ */
+void kuhn_altMarks(byte** marks, long* altRow, long* altCol, long* colMarks, long* rowPrimes, long* prime, long n, long m)
+{
+ long index = 0, i, j;
+ *altRow = *prime;
+ *altCol = *(prime + 1);
+
+ for (i = 0; i < n; i++)
+ {
+ *(rowPrimes + i) = -1;
+ *(colMarks + i) = -1;
+ }
+ for (i = n; i < m; i++)
+ *(colMarks + i) = -1;
+
+ for (i = 0; i < n; i++)
+ for (j = 0; j < m; j++)
+ if (*(*(marks + i) + j) == MARKED)
+ *(colMarks + j) = i;
+ else if (*(*(marks + i) + j) == PRIME)
+ *(rowPrimes + i) = j;
+
+ long row, col;
+ for (;;)
+ {
+ row = *(colMarks + *(altCol + index));
+ if (row < 0)
+ break;
+
+ index++;
+ *(altRow + index) = row;
+ *(altCol + index) = *(altCol + index - 1);
+
+ col = *(rowPrimes + *(altRow + index));
+
+ index++;
+ *(altRow + index) = *(altRow + index - 1);
+ *(altCol + index) = col;
+ }
+
+ byte* markx;
+ for (i = 0; i <= index; i++)
+ {
+ markx = *(marks + *(altRow + i)) + *(altCol + i);
+ if (*markx == MARKED)
+ *markx = UNMARKED;
+ else
+ *markx = MARKED;
+ }
+
+ byte* marksi;
+ for (i = 0; i < n; i++)
+ {
+ marksi = *(marks + i);
+ for (j = 0; j < m; j++)
+ if (*(marksi + j) == PRIME)
+ *(marksi + j) = UNMARKED;
+ }
+}
+
+
+/**
+ * Depending on whether the cells' rows and columns are covered,
+ * the the minimum value in the table is added, subtracted or
+ * neither from the cells.
+ *
+ * @param t The table to manipulate
+ * @param rowCovered Array that tell whether the rows are covered
+ * @param colCovered Array that tell whether the columns are covered
+ * @param n The table's height
+ * @param m The table's width
+ */
+void kuhn_addAndSubtract(cell** t, boolean* rowCovered, boolean* colCovered, long n, long m)
+{
+ long i, j;
+ cell min = 0x7FFFffffL;
+ for (i = 0; i < n; i++)
+ if (!*(rowCovered + i))
+ for (j = 0; j < m; j++)
+ if ((!*(colCovered + j)) && (min > *(*(t + i) + j)))
+ min = *(*(t + i) + j);
+
+ for (i = 0; i < n; i++)
+ for (j = 0; j < m; j++)
+ {
+ if (*(rowCovered + i))
+ *(*(t + i) + j) += min;
+ if (*(colCovered + j) == false)
+ *(*(t + i) + j) -= min;
+ }
+}
+
+
+/**
+ * Creates a list of the assignment cells
+ *
+ * @param marks Matrix markings
+ * @param n The table's height
+ * @param m The table's width
+ * @return The assignment, an array of row–coloumn pairs
+ */
+long** kuhn_assign(byte** marks, long n, long m)
+{
+ long** assignment = new_arrays(n);
+
+ long i, j;
+ for (i = 0; i < n; i++)
+ {
+ *(assignment + i) = new_longs(2);
+ for (j = 0; j < m; j++)
+ if (*(*(marks + i) + j) == MARKED)
+ {
+ **(assignment + i) = i;
+ *(*(assignment + i) + 1) = j;
+ }
+ }
+
+ return assignment;
+}
+
+
+/**
+ * Constructor for BitSet
+ *
+ * @param size The (fixed) number of bits to bit set should contain
+ * @return The a unique BitSet instance with the specified size
+ */
+BitSet new_BitSet(long size)
+{
+ BitSet this;
+
+ long c = size >> 6L;
+ if (size & 63L)
+ c++;
+
+ this.limbs = new_llongs(c);
+ this.prev = new_longs(c + 1L);
+ this.next = new_longs(c + 1L);
+ *(this.first = new_longs(1)) = 0;
+
+ long i;
+ for (i = 0; i < c; i++)
+ {
+ *(this.limbs + i) = 0LL;
+ *(this.prev + i) = *(this.next + i) = 0L;
+ }
+ *(this.prev + c) = *(this.next + c) = 0L;
+
+ return this;
+}
+
+/**
+ * Turns on a bit in a bit set
+ *
+ * @param this The bit set
+ * @param i The index of the bit to turn on
+ */
+void BitSet_set(BitSet this, long i)
+{
+ long j = i >> 6L;
+ llong old = *(this.limbs + j);
+
+ *(this.limbs + j) |= 1LL << (llong)(i & 63L);
+
+ if ((!*(this.limbs + j)) ^ (!old))
+ {
+ j++;
+ *(this.prev + *(this.first)) = j;
+ *(this.prev + j) = 0;
+ *(this.next + j) = *(this.first);
+ *(this.first) = j;
+ }
+}
+
+/**
+ * Turns off a bit in a bit set
+ *
+ * @param this The bit set
+ * @param i The index of the bit to turn off
+ */
+void BitSet_unset(BitSet this, long i)
+{
+ long j = i >> 6L;
+ llong old = *(this.limbs + j);
+
+ *(this.limbs + j) &= ~(1LL << (llong)(i & 63L));
+
+ if ((!*(this.limbs + j)) ^ (!old))
+ {
+ j++;
+ long p = *(this.prev + j);
+ long n = *(this.next + j);
+ *(this.prev + n) = p;
+ *(this.next + p) = n;
+ if (*(this.first) == j)
+ *(this.first) = *(this.next + j);
+ }
+}
+
+/**
+ * Gets the index of any set bit in a bit set
+ *
+ * @param this The bit set
+ * @return The index of any set bit
+ */
+long BitSet_any(BitSet this)
+{
+ if (*(this.first) == 0L)
+ return -1;
+
+ long i = *(this.first) - 1L;
+ return lb(*(this.limbs + i) & -*(this.limbs + i)) + (i << 6L);
+}
+
+
+/**
+ * Calculates the floored binary logarithm of a positive integer
+ *
+ * @param value The integer whose logarithm to calculate
+ * @return The floored binary logarithm of the integer
+ */
+long lb(llong value)
+{
+ long rc = 0L;
+ llong v = value;
+
+ if (v & 0xFFFFFFFF00000000LL) { rc |= 32L; v >>= 32LL; }
+ if (v & 0x00000000FFFF0000LL) { rc |= 16L; v >>= 16LL; }
+ if (v & 0x000000000000FF00LL) { rc |= 8L; v >>= 8LL; }
+ if (v & 0x00000000000000F0LL) { rc |= 4L; v >>= 4LL; }
+ if (v & 0x000000000000000CLL) { rc |= 2L; v >>= 2LL; }
+ if (v & 0x0000000000000002LL) rc |= 1L;
+
+ return rc;
+}
+