aboutsummaryrefslogtreecommitdiffstats
path: root/README
diff options
context:
space:
mode:
authorMattias Andrée <maandree@operamail.com>2012-11-06 15:05:13 +0100
committerMattias Andrée <maandree@operamail.com>2012-11-06 15:05:13 +0100
commit3d9bf15464bd70403a83497cc22bcb7368aa319c (patch)
tree1fc0f01b4cb0c8c0cb6039ec73d4e8275b55d72f /README
parentthe code (diff)
downloadhungarian-algorithm-n3-3d9bf15464bd70403a83497cc22bcb7368aa319c.tar.gz
hungarian-algorithm-n3-3d9bf15464bd70403a83497cc22bcb7368aa319c.tar.bz2
hungarian-algorithm-n3-3d9bf15464bd70403a83497cc22bcb7368aa319c.tar.xz
extend the readme
Diffstat (limited to '')
-rw-r--r--README9
1 files changed, 9 insertions, 0 deletions
diff --git a/README b/README
index 7d16e7c..192d9ca 100644
--- a/README
+++ b/README
@@ -1,3 +1,12 @@
𝓞(n³) implementation of the Hungarian algorithm,
also known as the Hungarian method, Kuhn–Munkres
algorithm or Munkres assignment.
+
+The Hungarian algorithm solved the minmum bipartite
+match problem in 𝓞(n⁴). By implementing the priority
+queue with a van Emde Boas tree the time can be
+reduced to 𝓞(n³ log log n). The van Emde Boas tree
+is possible to use because the elements values are
+bounded within the priority queue's capacity.
+However this implemention achived 𝓞(n³) by not using
+a priority queue.