aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorMattias Andrée <maandree@operamail.com>2013-09-27 20:01:33 +0200
committerMattias Andrée <maandree@operamail.com>2013-09-27 20:01:33 +0200
commitee3f63247fbd6785550dd1c63baca89a9f8873a4 (patch)
tree569df9ede9d90a0ac6174814f1124ddd82a79809
parentunrevert (diff)
downloadhungarian-algorithm-n3-ee3f63247fbd6785550dd1c63baca89a9f8873a4.tar.gz
hungarian-algorithm-n3-ee3f63247fbd6785550dd1c63baca89a9f8873a4.tar.bz2
hungarian-algorithm-n3-ee3f63247fbd6785550dd1c63baca89a9f8873a4.tar.xz
m readme
Signed-off-by: Mattias Andrée <maandree@operamail.com>
Diffstat (limited to '')
-rw-r--r--README6
1 files changed, 3 insertions, 3 deletions
diff --git a/README b/README
index a8b89ba..92df369 100644
--- a/README
+++ b/README
@@ -2,13 +2,13 @@
also known as the Hungarian method, Kuhn–Munkres
algorithm or Munkres assignment.
-The Hungarian algorithm solved the minmum bipartite
-match problem in 𝓞(n⁴). By implementing the priority
+The Hungarian algorithm solves the minmum bipartite
+matching problem in 𝓞(n⁴). By implementing the priority
queue with a van Emde Boas tree the time can be
reduced to 𝓞(n³ log log n). The van Emde Boas tree
is possible to use because the elements values are
bounded within the priority queue's capacity.
-However this implemention achived 𝓞(n³) by not using
+However this implemention achives 𝓞(n³) by not using
a priority queue.
Edmonds and Karp, and independently Tomizawa, has