/* See LICENSE file for copyright and license details. */ #include "cg-base.h" #include #if defined(_GNU_SOURCE) # undef _GNU_SOURCE #endif #include #include #include #include #include #include #include #include /** * The default filter priority for the program */ const int64_t default_priority = (int64_t)3 << 59; /** * The default class for the program */ char default_class[] = PKGNAME "::cg-sleepmode::standard"; /** * Class suffixes */ const char *const *class_suffixes = (const char *const[]){NULL}; /** * -r: fade-out time for the red channel */ static char *rflag; /** * -g: fade-out time for the green channel */ static char *gflag; /** * -b: fade-out time for the blue channel */ static char *bflag; /** * The duration, in seconds, of the red channel's fade out */ static double red_time = 3; /** * The duration, in seconds, of the green channel's fade out */ static double green_time = 2; /** * The duration, in seconds, of the blue channel's fade out */ static double blue_time = 1; /** * The luminosity of red channel after the fade out */ static double red_target = 0.5; /** * The luminosity of green channel after the fade out */ static double green_target = 0; /** * The luminosity of blue channel after the fade out */ static double blue_target = 0; /** * Time to fade in? */ static volatile sig_atomic_t received_int = 0; /** * Print usage information and exit */ void usage(void) { fprintf(stderr, "usage: %s [-M method] [-S site] [-c crtc]... [-R rule] [-p priority] " "[-r red-fadeout-time] [-g green-fadeout-time] [-b blue-fadeout-time] " "[red-luminosity [green-luminosity [blue-luminosity]]]\n", argv0); exit(1); } /** * Called when a signal is received * that tells the program to terminate * * @param signo The received signal */ static void sig_int(int signo) { received_int = 1; (void) signo; } /** * Handle a command line option * * @param opt The option, it is a NUL-terminate two-character * string starting with either '-' or '+', if the * argument is not recognised, call `usage`. This * string will not be "-M", "-S", "-c", "-p", or "-R". * @param arg The argument associated with `opt`, * `NULL` there is no next argument, if this * parameter is `NULL` but needed, call `usage` * @return 0 if `arg` was not used, * 1 if `arg` was used, * -1 on error */ int handle_opt(char *opt, char *arg) { if (opt[0] == '-') { switch (opt[1]) { case 'r': if (rflag || !(rflag = arg)) usage(); return 1; case 'g': if (gflag || !(gflag = arg)) usage(); return 1; case 'b': if (bflag || !(bflag = arg)) usage(); return 1; default: usage(); } } else { usage(); } return 0; } /** * Parse a non-negative double encoded as a string * * @param out Output parameter for the value * @param str The string * @return Zero on success, -1 if the string is invalid */ static int parse_double(double *restrict out, const char *restrict str) { char *end; errno = 0; *out = strtod(str, &end); if (errno || *out < 0 || isinf(*out) || isnan(*out) || *end) return -1; if (!*str || !strchr("0123456789.", *str)) return -1; return 0; } /** * This function is called after the last * call to `handle_opt` * * @param argc The number of unparsed arguments * @param argv `NULL` terminated list of unparsed arguments * @param prio The argument associated with the "-p" option * @return Zero on success, -1 on error */ int handle_args(int argc, char *argv[], char *prio) { int q = (rflag || gflag || bflag || argc); if (q > 1 || argc > 3) usage(); if (rflag && parse_double(&red_time, rflag) < 0) usage(); if (gflag && parse_double(&green_time, gflag) < 0) usage(); if (bflag && parse_double(&blue_time, bflag) < 0) usage(); if (argc >= 1 && parse_double(&red_target, argv[0]) < 0) usage(); if (argc >= 2 && parse_double(&green_target, argv[1]) < 0) usage(); if (argc >= 3 && parse_double(&blue_target, argv[2]) < 0) usage(); if (red_target >= 1) red_time = 0; if (green_target >= 1) green_time = 0; if (blue_target >= 1) blue_time = 0; return 0; (void) prio; } /** * Fill a filter * * @param filter The filter to fill * @param red The red brightness * @param green The green brightness * @param blue The blue brightness */ static void fill_filter(libcoopgamma_filter_t *restrict filter, double red, double green, double blue) { switch (filter->depth) { #define X(CONST, MEMBER, MAX, TYPE)\ case CONST:\ libclut_start_over(&filter->ramps.MEMBER, MAX, TYPE, 1, 1, 1);\ libclut_rgb_brightness(&filter->ramps.MEMBER, MAX, TYPE, red, green, blue);\ break; LIST_DEPTHS #undef X default: abort(); } } /** * Get the current monotonic time as a double * * @param now Output parameter for the current time (monotonic) * @return Zero on success, -1 on error */ static int double_time(double *restrict now) { #ifndef CLOCK_MONOTONIC_RAW # define CLOCK_MONOTONIC_RAW CLOCK_MONOTONIC #endif struct timespec ts; if (clock_gettime(CLOCK_MONOTONIC_RAW, &ts) < 0) return -1; *now = (double)(ts.tv_nsec); *now /= 1000000000L; *now += (double)(ts.tv_sec); return 0; } /** * The main function for the program-specific code * * @return 0: Success * -1: Error, `errno` set * -2: Error, `cg.error` set * -3: Error, message already printed */ int start(void) { int r, fade_red, fade_green, fade_blue; size_t i, j; double t, starttime, red, green, blue, redt, greent, bluet; redt = (red_target - 1) / red_time; greent = (green_target - 1) / green_time; bluet = (blue_target - 1) / blue_time; fade_red = !isinf(redt) && !isnan(redt); fade_green = !isinf(greent) && !isnan(greent); fade_blue = !isinf(bluet) && !isnan(bluet); for (i = 0; i < filters_n; i++) crtc_updates[i].filter.lifespan = LIBCOOPGAMMA_UNTIL_DEATH; if ((r = make_slaves()) < 0) return r; if ((r = double_time(&starttime)) < 0) return r; red = red_target < 0 ? 0 : red_target > 1 ? 1 : red_target; green = green_target < 0 ? 0 : green_target > 1 ? 1 : green_target; blue = blue_target < 0 ? 0 : blue_target > 1 ? 1 : blue_target; for (;;) { if ((r = double_time(&t)) < 0) return r; t -= starttime; if (fade_red) { red = 1 + t * redt; if (red > 1) red = 1; else if (red < 0) red = 0; } if (fade_green) { green = 1 + t * greent; if (green > 1) green = 1; else if (green < 0) green = 0; } if (fade_blue) { blue = 1 + t * bluet; if (blue > 1) blue = 1; else if (blue < 0) blue = 0; } for (i = 0, r = 1; i < filters_n; i++) { if (!crtc_updates[i].master || !crtc_info[crtc_updates[i].crtc].supported) continue; fill_filter(&crtc_updates[i].filter, red, green, blue); r = update_filter(i, 0); if (r == -2 || (r == -1 && errno != EAGAIN)) return r; if (crtc_updates[i].slaves) for (j = 0; crtc_updates[i].slaves[j]; j++) { r = update_filter(crtc_updates[i].slaves[j], 0); if (r == -2 || (r == -1 && errno != EAGAIN)) return r; } } while (r != 1) if ((r = synchronise(-1)) < 0) return r; sched_yield(); if (t >= red_time && t >= green_time && t >= blue_time) break; } if (signal(SIGINT, sig_int) == SIG_ERR || signal(SIGTERM, sig_int) == SIG_ERR || signal(SIGHUP, sig_int) == SIG_ERR) return -1; if (libcoopgamma_set_nonblocking(&cg, 0) < 0) return -1; for (;;) { if (libcoopgamma_synchronise(&cg, NULL, 0, &j) < 0) { if (received_int) goto fade_in; switch (errno) { case 0: break; case ENOTRECOVERABLE: goto enotrecoverable; default: return 1; } } } fade_in: if (libcoopgamma_set_nonblocking(&cg, 1) < 0) return -1; t = red_time; t = t > green_time ? t : green_time; t = t > blue_time ? t : blue_time; redt = t - red_time; greent = t - green_time; bluet = t - blue_time; t = red_time + green_time + blue_time; if (red_time > 0) t = t < red_time ? t : red_time; if (green_time > 0) t = t < green_time ? t : green_time; if (blue_time > 0) t = t < blue_time ? t : blue_time; red_time = t + redt; green_time = t + greent; blue_time = t + bluet; red = green = blue = 1; if ((r = double_time(&starttime)) < 0) return r; for (;;) { if ((r = double_time(&t)) < 0) return r; t -= starttime; redt = t / red_time; greent = t / green_time; bluet = t / blue_time; if (!isinf(redt) && !isnan(redt)) { red = red_target * (1 - redt) + redt; if (red > 1) red = 1; else if (red < 0) red = 0; } if (!isinf(greent) && !isnan(greent)) { green = green_target * (1 - greent) + greent; if (green > 1) green = 1; else if (green < 0) green = 0; } if (!isinf(bluet) && !isnan(bluet)) { blue = blue_target * (1 - bluet) + bluet; if (blue > 1) blue = 1; else if (blue < 0) blue = 0; } for (i = 0, r = 1; i < filters_n; i++) { if (!crtc_updates[i].master || !crtc_info[crtc_updates[i].crtc].supported) continue; fill_filter(&crtc_updates[i].filter, red, green, blue); r = update_filter(i, 0); if (r == -2 || (r == -1 && errno != EAGAIN)) return r; if (crtc_updates[i].slaves) { for (j = 0; crtc_updates[i].slaves[j]; j++) { r = update_filter(crtc_updates[i].slaves[j], 0); if (r == -2 || (r == -1 && errno != EAGAIN)) return r; } } } while (r != 1 && (r = synchronise(-1)) < 0) return r; sched_yield(); if (t >= red_time && t >= green_time && t >= blue_time) break; } return 0; enotrecoverable: pause(); return -1; }