/* See LICENSE file for copyright and license details. */
#include "bus.h"
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <time.h>
#include <unistd.h>
#ifdef BUS_SEMAPHORES_ARE_SYNCHRONOUS_ME_EVEN_HARDER
# ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS_ME_HARDER
# define BUS_SEMAPHORES_ARE_SYNCHRONOUS_ME_HARDER
# endif
#endif
#ifdef BUS_SEMAPHORES_ARE_SYNCHRONOUS_ME_HARDER
# ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS
# define BUS_SEMAPHORES_ARE_SYNCHRONOUS
# endif
#endif
/**
* Semaphore used to signal `bus_write` that `bus_read` is ready
*/
#define S 0
/**
* Semaphore for making `bus_write` wait while `bus_read` is reseting `S`
*/
#define W 1
/**
* Binary semaphore for making `bus_write` exclusively locked
*/
#define X 2
/**
* Semaphore used to cue `bus_read` that it may read the shared memory
*/
#define Q 3
#ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS_ME_EVEN_HARDER
/**
* Semaphore used to notify `bus_read` that it may restore `S`
*/
# define N 4
/**
* The number of semaphores in the semaphore array
*/
# define BUS_SEMAPHORES 5
#else
# define BUS_SEMAPHORES 4
#endif
/**
* The default permission mits of the bus
*/
#define DEFAULT_MODE 0600
/**
* Decrease the value of a semaphore by 1
*
* @param bus:const bus_t * The bus
* @param semaphore:int The index of the semaphore, `S`, `W`, `X` or `Q`
* @param flags:int `SEM_UNDO` if the action should be undone when the program exits,
* `IPC_NOWAIT` if the action should fail if it would block
* @return :int 0 on success, -1 on error
*/
#define acquire_semaphore(bus, semaphore, flags) \
semaphore_op(bus, semaphore, -1, flags)
/**
* Increase the value of a semaphore by 1
*
* @param bus:const bus_t * The bus
* @param semaphore:int The index of the semaphore, `S`, `W`, `X` or `Q`
* @param flags:int `SEM_UNDO` if the action should be undone when the program exits
* @return :int 0 on success, -1 on error
*/
#define release_semaphore(bus, semaphore, flags) \
semaphore_op(bus, semaphore, +1, flags)
/**
* Wait for the value of a semaphore to become 0
*
* @param bus:const bus_t * The bus
* @param semaphore:int The index of the semaphore, `S`, `W`, `X` or `Q`
* @param flags:int `IPC_NOWAIT` if the action should fail if it would block
* @return :int 0 on success, -1 on error
*/
#define zero_semaphore(bus, semaphore, flags) \
semaphore_op(bus, semaphore, 0, flags)
/**
* Decrease the value of a semaphore by 1
*
* @param bus:const bus_t * The bus
* @param semaphore:int The index of the semaphore, `S`, `W`, `X` or `Q`
* @param flags:int `SEM_UNDO` if the action should be undone when the program exits,
* `IPC_NOWAIT` if the action should fail if it would block
* @param timeout:const struct timespec * The amount of time to wait before failing
* @return :int 0 on success, -1 on error
*/
#define acquire_semaphore_timed(bus, semaphore, flags, timeout) \
semaphore_op_timed(bus, semaphore, -1, flags, timeout)
/**
* Increase the value of a semaphore by 1
*
* @param bus:const bus_t * The bus
* @param semaphore:int The index of the semaphore, `S`, `W`, `X` or `Q`
* @param flags:int `SEM_UNDO` if the action should be undone when the program exits
* @param timeout:const struct timespec * The amount of time to wait before failing
* @return :int 0 on success, -1 on error
*/
#define release_semaphore_timed(bus, semaphore, flags, timeout) \
semaphore_op_timed(bus, semaphore, +1, flags, timeout)
/**
* Wait for the value of a semaphore to become 0
*
* @param bus:const bus_t * The bus
* @param semaphore:int The index of the semaphore, `S`, `W`, `X` or `Q`
* @param flags:int `IPC_NOWAIT` if the action should fail if it would block
* @param timeout:const struct timespec * The amount of time to wait before failing
* @return :int 0 on success, -1 on error
*/
#define zero_semaphore_timed(bus, semaphore, flags, timeout) \
semaphore_op_timed(bus, semaphore, 0, flags, timeout)
/**
* Open the semaphore array
*
* @param bus:const bus_t * The bus
* @return :int 0 on success, -1 on error
*/
#define open_semaphores(bus) \
(((bus)->sem_id = semget((bus)->key_sem, BUS_SEMAPHORES, 0)) == -1 ? -1 : 0)
/**
* Write a message to the shared memory
*
* @param bus:const bus_t * The bus
* @param msg:const char * The message
* @return :int 0 on success, -1 on error
*/
#define write_shared_memory(bus, msg) \
(memcpy((bus)->message, msg, (strlen(msg) + 1) * sizeof(char)))
/**
* Set `delta` to the convertion of `timeout` from absolute to relative time,
* measured in the clock whose ID is specified by `clockid`
*
* @scope timeout:struct timespec Output variable for relative time
* @scope timeout:const struct timespec * The absolute time
* @scope clockid:clockid_t The clock time is measured
*/
#define DELTA \
do { \
if (absolute_time_to_delta_time(&delta, timeout, clockid) < 0) { \
goto fail; \
} else if ((delta.tv_sec < 0) || (delta.tv_nsec < 0)) { \
errno = EAGAIN; \
goto fail; \
}\
} while (0)
/**
* If `flags & (bus_flag)`, this macro evalutes to `sys_flag`,
* otherwise this macro evalutes to 0.
*/
#define F(bus_flag, sys_flag) \
((flags & (bus_flag)) ? sys_flag : 0)
/**
* Statement wrapper that goes to `fail` on failure
*/
#define t(inst) \
do { if ((inst) == -1) goto fail; } while (0)
#ifdef _SEM_SEMUN_UNDEFINED
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
};
#endif
/**
* Create a semaphore array for the bus
*
* @param bus Bus information to fill with the key of the created semaphore array
* @return 0 on success, -1 on error
*/
static int
create_semaphores(bus_t *bus)
{
int id = -1, rint, saved_errno;
double r;
union semun values;
values.array = NULL;
/* Create semaphore array. */
for (;;) {
rint = rand();
r = (double)rint;
r /= (double)RAND_MAX + 1;
r *= (1 << (8 * sizeof(key_t) - 2)) - 1;
bus->key_sem = (key_t)r + 1;
if (bus->key_sem == IPC_PRIVATE)
continue;
id = semget(bus->key_sem, BUS_SEMAPHORES, IPC_CREAT | IPC_EXCL | DEFAULT_MODE);
if (id != -1)
break;
if ((errno != EEXIST) && (errno != EINTR))
goto fail;
}
/* Initialise the array. */
values.array = calloc((size_t)BUS_SEMAPHORES, sizeof(unsigned short));
if (!values.array)
goto fail;
values.array[X] = 1;
if (semctl(id, 0, SETALL, values.array) == -1)
goto fail;
free(values.array);
values.array = NULL;
return 0;
fail:
saved_errno = errno;
if (id != -1)
semctl(id, 0, IPC_RMID);
free(values.array);
errno = saved_errno;
return -1;
}
/**
* Create a shared memory for the bus
*
* @param bus Bus information to fill with the key of the created shared memory
* @return 0 on success, -1 on error
*/
static int
create_shared_memory(bus_t *bus)
{
int id = -1, rint, saved_errno;
double r;
struct shmid_ds _info;
/* Create shared memory. */
for (;;) {
rint = rand();
r = (double)rint;
r /= (double)RAND_MAX + 1;
r *= (1 << (8 * sizeof(key_t) - 2)) - 1;
bus->key_shm = (key_t)r + 1;
if (bus->key_shm == IPC_PRIVATE)
continue;
id = shmget(bus->key_shm, (size_t)BUS_MEMORY_SIZE, IPC_CREAT | IPC_EXCL | DEFAULT_MODE);
if (id != -1)
break;
if ((errno != EEXIST) && (errno != EINTR))
goto fail;
}
return 0;
fail:
saved_errno = errno;
if (id != -1)
shmctl(id, IPC_RMID, &_info);
errno = saved_errno;
return -1;
}
/**
* Remove the semaphore array for the bus
*
* @param bus Bus information
* @return 0 on success, -1 on error
*/
static int
remove_semaphores(const bus_t *bus)
{
int id = semget(bus->key_sem, BUS_SEMAPHORES, 0);
return ((id == -1) || (semctl(id, 0, IPC_RMID) == -1)) ? -1 : 0;
}
/**
* Remove the shared memory for the bus
*
* @param bus Bus information
* @return 0 on success, -1 on error
*/
static int
remove_shared_memory(const bus_t *bus)
{
struct shmid_ds _info;
int id = shmget(bus->key_shm, (size_t)BUS_MEMORY_SIZE, 0);
return ((id == -1) || (shmctl(id, IPC_RMID, &_info) == -1)) ? -1 : 0;
}
/**
* Increase or decrease the value of a semaphore, or wait the it to become 0
*
* @param bus Bus information
* @param semaphore The index of the semaphore, `S`, `W`, `X` or `Q`
* @param delta The adjustment to make to the semaphore's value, 0 to wait for it to become 0
* @param flags `SEM_UNDO` if the action should be undone when the program exits
* @return 0 on success, -1 on error
*/
static int
semaphore_op(const bus_t *bus, int semaphore, int delta, int flags)
{
struct sembuf op;
op.sem_num = (unsigned short)semaphore;
op.sem_op = (short)delta;
op.sem_flg = (short)flags;
return semop(bus->sem_id, &op, (size_t)1);
}
/**
* Increase or decrease the value of a semaphore, or wait the it to become 0
*
* @param bus Bus information
* @param semaphore The index of the semaphore, `S`, `W`, `X` or `Q`
* @param delta The adjustment to make to the semaphore's value, 0 to wait for it to become 0
* @param flags `SEM_UNDO` if the action should be undone when the program exits
* @param timeout The amount of time to wait before failing
* @return 0 on success, -1 on error
*/
static int
semaphore_op_timed(const bus_t *bus, int semaphore, int delta, int flags, const struct timespec *timeout)
{
struct sembuf op;
op.sem_num = (unsigned short)semaphore;
op.sem_op = (short)delta;
op.sem_flg = (short)flags;
return semtimedop(bus->sem_id, &op, (size_t)1, timeout);
}
/**
* Set the value of a semaphore
*
* @param bus Bus information
* @param semaphore The index of the semaphore, `S`, `W`, `X` or `Q`
* @param value The new value of the semaphore
* @return 0 on success, -1 on error
*/
static int
write_semaphore(const bus_t *bus, unsigned semaphore, int value)
{
union semun semval;
semval.val = value;
return semctl(bus->sem_id, (unsigned short)semaphore, SETVAL, semval);
}
/**
* Open the shared memory for the bus
*
* @param bus Bus information
* @param flags `BUS_RDONLY`, `BUS_WRONLY` or `BUS_RDWR`
* @return 0 on success, -1 on error
*/
static int
open_shared_memory(bus_t *bus, int flags)
{
int id;
void *address;
t(id = shmget(bus->key_shm, (size_t)BUS_MEMORY_SIZE, 0));
address = shmat(id, NULL, (flags & BUS_RDONLY) ? SHM_RDONLY : 0);
if ((address == (void *)-1) || !address)
goto fail;
bus->message = (char *)address;
return 0;
fail:
return -1;
}
/**
* Close the shared memory for the bus
*
* @param bus Bus information
* @return 0 on success, -1 on error
*/
static int
close_shared_memory(bus_t *bus)
{
t(shmdt(bus->message));
bus->message = NULL;
return 0;
fail:
return -1;
}
/**
* Get a random ASCII letter or digit
*
* @return A random ASCII letter or digit
*/
static char
randomchar(void)
{
int rint = rand();
double r = (double)rint;
r /= (double)RAND_MAX + 1;
r *= 10 + 26 + 26;
return "0123456789qwertyuiopasdfghjklzxcvbnmQWERTYUIOPASDFGHJKLZXCVBNM"[(int)r];
}
/**
* Basically, this is `mkdir -p -m $mode $pathname`
*
* @param pathname The pathname of the directory to create if missing
* @param mode The permission bits of any created directory
* @return 0 on sucess, -1 on error
*/
static int
mkdirs(char *pathname, mode_t mode)
{
size_t i, n = strlen(pathname);
char c;
for (i = 0; i < n; i++)
if (pathname[i] != '/')
break;
for (; i < n; i++) {
if (pathname[i] == '/') {
c = pathname[i];
if (access(pathname, F_OK))
if (mkdir(pathname, mode) < 0)
return -1;
pathname[i] = c;
break;
}
}
if (access(pathname, F_OK))
if (mkdir(pathname, mode) < 0)
return -1;
return 0;
}
/**
* Convert an absolute time to a relative time
*
* @param delta Output parameter for the relative time
* @param absolute The absolute time
* @param clockid The ID of the clock the time is measured in
* @return 0 on success, -1 on error
*/
static int
absolute_time_to_delta_time(struct timespec *delta, const struct timespec *absolute, clockid_t clockid)
{
if (clock_gettime(clockid, delta) < 0)
return -1;
delta->tv_sec = absolute->tv_sec - delta->tv_sec;
delta->tv_nsec = absolute->tv_nsec - delta->tv_nsec;
if (delta->tv_nsec < 0L) {
delta->tv_nsec += 1000000000L;
delta->tv_sec -= 1;
}
if (delta->tv_nsec >= 1000000000L) {
delta->tv_nsec -= 1000000000L;
delta->tv_sec += 1;
}
return 0;
}
/**
* Create a new bus
*
* @param file The pathname of the bus, `NULL` to create a random one
* @param flags `BUS_EXCL` (if `file` is not `NULL`) to fail if the file
* already exists, otherwise if the file exists, nothing
* will happen;
* `BUS_INTR` to fail if interrupted
* @param out_file Output parameter for the pathname of the bus
* @return 0 on success, -1 on error
*/
int
bus_create(const char *restrict file, int flags, char **restrict out_file)
{
int fd = -1, saved_errno;
bus_t bus;
char buf[1 + 2 * (3 * sizeof(ssize_t) + 2)];
size_t ptr, len;
ssize_t wrote;
char *genfile = NULL;
const char *env;
if (out_file)
*out_file = NULL;
bus.sem_id = -1;
bus.key_sem = -1;
bus.key_shm = -1;
bus.message = NULL;
bus.first_poll = 0;
srand((unsigned int)time(NULL) + (unsigned int)rand());
if (file) {
fd = open(file, O_WRONLY | O_CREAT | O_EXCL, DEFAULT_MODE);
if (fd == -1) {
if ((errno != EEXIST) || (flags & BUS_EXCL))
return -1;
goto done;
}
} else {
env = getenv("XDG_RUNTIME_DIR");
if (!env || !*env)
env = "/run";
genfile = malloc((strlen(env) + 6 + 7 + 30) * sizeof(char));
if (!genfile)
goto fail;
if (out_file)
*out_file = genfile;
sprintf(genfile, "%s/bus", env);
t(mkdirs(genfile, 0755));
sprintf(genfile, "%s/bus/random.", env);
len = strlen(genfile);
genfile[len + 30] = '\0';
retry:
for (ptr = 0; ptr < 30; ptr++)
genfile[len + ptr] = randomchar();
fd = open(genfile, O_WRONLY | O_CREAT | O_EXCL, DEFAULT_MODE);
if (fd == -1) {
if (errno == EEXIST)
goto retry;
return -1;
}
}
t(create_semaphores(&bus));
t(create_shared_memory(&bus));
sprintf(buf, "%zi\n%zi\n", (ssize_t)(bus.key_sem), (ssize_t)(bus.key_shm));
for (len = strlen(buf), ptr = 0; ptr < len;) {
wrote = write(fd, buf + ptr, len - ptr);
if (wrote < 0) {
if ((errno != EINTR) || (flags & BUS_INTR))
goto fail;
} else {
ptr += (size_t)wrote;
}
}
close(fd);
done:
if (out_file && !*out_file) {
len = strlen(file) + 1;
*out_file = malloc(len * sizeof(char));
memcpy(*out_file, file, len * sizeof(char));
} else if (!out_file) {
free(genfile);
}
return 0;
fail:
saved_errno = errno;
if (bus.key_sem)
remove_semaphores(&bus);
if (bus.key_shm)
remove_shared_memory(&bus);
if (fd == -1)
close(fd);
if (out_file)
*out_file = NULL;
free(genfile);
unlink(file);
errno = saved_errno;
return -1;
}
/**
* Remove a bus
*
* @param file The pathname of the bus
* @return 0 on success, -1 on error
*/
int
bus_unlink(const char *file)
{
int r = 0, saved_errno = 0;
bus_t bus;
t(bus_open(&bus, file, -1));
r |= remove_semaphores(&bus);
if (r && !saved_errno)
saved_errno = errno;
r |= remove_shared_memory(&bus);
if (r && !saved_errno)
saved_errno = errno;
r |= unlink(file);
if (r && !saved_errno)
saved_errno = errno;
errno = saved_errno;
return r;
fail:
return -1;
}
/**
* Open an existing bus
*
* @param bus Bus information to fill
* @param file The filename of the bus
* @param flags `BUS_RDONLY`, `BUS_WRONLY` or `BUS_RDWR`
* any negative value is used internally
* for telling the function to not actually
* opening the bus, but just to parse the file
* @return 0 on success, -1 on error
*/
int
bus_open(bus_t *restrict bus, const char *restrict file, int flags)
{
int saved_errno;
char *line = NULL;
size_t len = 0;
FILE *f;
bus->sem_id = -1;
bus->key_sem = -1;
bus->key_shm = -1;
bus->message = NULL;
f = fopen(file, "r");
t(getline(&line, &len, f));
t(bus->key_sem = (key_t)atoll(line));
free(line), line = NULL, len = 0;
t(getline(&line, &len, f));
t(bus->key_shm = (key_t)atoll(line));
free(line), line = NULL;
fclose(f);
if (flags >= 0) {
t(open_semaphores(bus));
t(open_shared_memory(bus, flags));
}
return 0;
fail:
saved_errno = errno;
free(line);
errno = saved_errno;
return -1;
}
/**
* Close a bus
*
* @param bus Bus information
* @return 0 on success, -1 on error
*/
int
bus_close(bus_t *bus)
{
bus->sem_id = -1;
if (bus->message)
t(close_shared_memory(bus));
bus->message = NULL;
return 0;
fail:
return -1;
}
/**
* Broadcast a message on a bus
*
* @param bus Bus information
* @param message The message to write, may not be longer than
* `BUS_MEMORY_SIZE` including the NUL-termination
* @param flags `BUS_NOWAIT` if this function shall fail if
* another process is currently running this
* procedure
* @return 0 on success, -1 on error
*/
int
bus_write(const bus_t *bus, const char *message, int flags)
{
int saved_errno;
#ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS
int state = 0;
#endif
if (acquire_semaphore(bus, X, SEM_UNDO | F(BUS_NOWAIT, IPC_NOWAIT)) == -1)
return -1;
t(zero_semaphore(bus, W, 0));
write_shared_memory(bus, message);
#ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS
t(release_semaphore(bus, N, SEM_UNDO)); state++;
#endif
t(write_semaphore(bus, Q, 0));
t(zero_semaphore(bus, S, 0));
#ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS
t(acquire_semaphore(bus, N, SEM_UNDO)); state--;
#endif
t(release_semaphore(bus, X, SEM_UNDO));
return 0;
fail:
saved_errno = errno;
#ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS
if (state > 0)
acquire_semaphore(bus, N, SEM_UNDO);
#endif
release_semaphore(bus, X, SEM_UNDO);
errno = saved_errno;
return -1;
}
/**
* Broadcast a message on a bus
*
* @param bus Bus information
* @param message The message to write, may not be longer than
* `BUS_MEMORY_SIZE` including the NUL-termination
* @param timeout The time the operation shall fail with errno set
* to `EAGAIN` if not completed
* @param clockid The ID of the clock the `timeout` is measured with,
* it most be a predictable clock
* @return 0 on success, -1 on error
*/
int bus_write_timed(const bus_t *bus, const char *message,
const struct timespec *timeout, clockid_t clockid)
{
int saved_errno;
#ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS
int state = 0;
#endif
struct timespec delta;
if (!timeout)
return bus_write(bus, message, 0);
DELTA;
if (acquire_semaphore_timed(bus, X, SEM_UNDO, &delta) == -1)
return -1;
DELTA;
t(zero_semaphore_timed(bus, W, 0, &delta));
write_shared_memory(bus, message);
#ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS
t(release_semaphore(bus, N, SEM_UNDO)); state++;
#endif
t(write_semaphore(bus, Q, 0));
t(zero_semaphore(bus, S, 0));
#ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS
t(acquire_semaphore(bus, N, SEM_UNDO)); state--;
#endif
t(release_semaphore(bus, X, SEM_UNDO));
return 0;
fail:
saved_errno = errno;
#ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS
if (state > 0)
acquire_semaphore(bus, N, SEM_UNDO);
#endif
release_semaphore(bus, X, SEM_UNDO);
errno = saved_errno;
return -1;
}
/**
* Listen (in a loop, forever) for new message on a bus
*
* @param bus Bus information
* @param callback Function to call when a message is received, the
* input parameters will be the read message and
* `user_data` from `bus_read`'s parameter with the
* same name. The message must have been parsed or
* copied when `callback` returns as it may be over
* overridden after that time. `callback` should
* return either of the the values:
* * 0: stop listening
* * 1: continue listening
* * -1: an error has occurred
* However, the function [`bus_read`] will invoke
* `callback` with `message` set to `NULL`one time
* directly after it has started listening on the
* bus. This is to the the program now it can safely
* continue with any action that requires that the
* programs is listening on the bus.
* @param user_data Parameter passed to `callback`
* @return 0 on success, -1 on error
*/
int
bus_read(const bus_t *restrict bus, int (*callback)(const char *message, void *user_data), void *user_data)
{
int r, state = 0, saved_errno;
if (release_semaphore(bus, S, SEM_UNDO) == -1)
return -1;
t(r = callback(NULL, user_data));
if (!r) goto done;
for (;;) {
t(release_semaphore(bus, Q, 0));
t(zero_semaphore(bus, Q, 0));
t(r = callback(bus->message, user_data));
if (!r) goto done;
t(release_semaphore(bus, W, SEM_UNDO)); state++;
t(acquire_semaphore(bus, S, SEM_UNDO)); state++;
t(zero_semaphore(bus, S, 0));
#ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS_ME_HARDER
t(zero_semaphore(bus, N, 0));
#endif
t(release_semaphore(bus, S, SEM_UNDO)); state--;
t(acquire_semaphore(bus, W, SEM_UNDO)); state--;
}
fail:
saved_errno = errno;
if (state > 1)
release_semaphore(bus, S, SEM_UNDO);
if (state > 0)
acquire_semaphore(bus, W, SEM_UNDO);
acquire_semaphore(bus, S, SEM_UNDO);
errno = saved_errno;
return -1;
done:
t(acquire_semaphore(bus, S, SEM_UNDO));
return 0;
}
/**
* Listen (in a loop, forever) for new message on a bus
*
* @param bus Bus information
* @param callback Function to call when a message is received, the
* input parameters will be the read message and
* `user_data` from `bus_read`'s parameter with the
* same name. The message must have been parsed or
* copied when `callback` returns as it may be over
* overridden after that time. `callback` should
* return either of the the values:
* * 0: stop listening
* * 1: continue listening
* * -1: an error has occurred
* However, the function [`bus_read`] will invoke
* `callback` with `message` set to `NULL`one time
* directly after it has started listening on the
* bus. This is to the the program now it can safely
* continue with any action that requires that the
* programs is listening on the bus.
* @param user_data Parameter passed to `callback`
* @param timeout The time the operation shall fail with errno set
* to `EAGAIN` if not completed, note that the callback
* function may or may not have been called
* @param clockid The ID of the clock the `timeout` is measured with,
* it most be a predictable clock
* @return 0 on success, -1 on error
*/
int bus_read_timed(const bus_t *restrict bus, int (*callback)(const char *message, void *user_data),
void *user_data, const struct timespec *timeout, clockid_t clockid)
{
int r, state = 0, saved_errno;
struct timespec delta;
if (!timeout)
return bus_read(bus, callback, user_data);
DELTA;
if (release_semaphore_timed(bus, S, SEM_UNDO, &delta) == -1)
return -1;
t(r = callback(NULL, user_data));
if (!r) goto done;
for (;;) {
DELTA;
t(release_semaphore_timed(bus, Q, 0, &delta));
DELTA;
t(zero_semaphore_timed(bus, Q, 0, &delta));
t(r = callback(bus->message, user_data));
if (!r) goto done;
t(release_semaphore(bus, W, SEM_UNDO)); state++;
t(acquire_semaphore(bus, S, SEM_UNDO)); state++;
t(zero_semaphore(bus, S, 0));
#ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS_ME_HARDER
t(zero_semaphore(bus, N, 0));
#endif
t(release_semaphore(bus, S, SEM_UNDO)); state--;
t(acquire_semaphore(bus, W, SEM_UNDO)); state--;
}
fail:
saved_errno = errno;
if (state > 1)
release_semaphore(bus, S, SEM_UNDO);
if (state > 0)
acquire_semaphore(bus, W, SEM_UNDO);
acquire_semaphore(bus, S, SEM_UNDO);
errno = saved_errno;
return -1;
done:
t(acquire_semaphore(bus, S, SEM_UNDO));
return 0;
}
/**
* Announce that the thread is listening on the bus.
* This is required so the will does not miss any
* messages due to race conditions. Additionally,
* not calling this function will cause the bus the
* misbehave, is `bus_poll` is written to expect
* this function to have been called.
*
* @param bus Bus information
* @return 0 on success, -1 on error
*/
int
bus_poll_start(bus_t *bus)
{
bus->first_poll = 1;
t(release_semaphore(bus, S, SEM_UNDO));
t(release_semaphore(bus, Q, 0));
return 0;
fail:
return -1;
}
/**
* Announce that the thread has stopped listening on the bus.
* This is required so that the thread does not cause others
* to wait indefinitely.
*
* @param bus Bus information
* @return 0 on success, -1 on error
*/
int
bus_poll_stop(const bus_t *bus)
{
return acquire_semaphore(bus, S, SEM_UNDO | IPC_NOWAIT);
}
/**
* Wait for a message to be broadcasted on the bus.
* The caller should make a copy of the received message,
* without freeing the original copy, and parse it in a
* separate thread. When the new thread has started be
* started, the caller of this function should then
* either call `bus_poll` again or `bus_poll_stop`.
*
* @param bus Bus information
* @param flags `BUS_NOWAIT` if the bus should fail and set `errno` to
* `EAGAIN` if there isn't already a message available on the bus
* @return The received message, `NULL` on error
*/
const char *
bus_poll(bus_t *bus, int flags)
{
int state = 0, saved_errno;
if (!bus->first_poll) {
t(release_semaphore(bus, W, SEM_UNDO)); state++;
t(acquire_semaphore(bus, S, SEM_UNDO)); state++;
t(zero_semaphore(bus, S, 0));
#ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS_ME_HARDER
t(zero_semaphore(bus, N, 0));
#endif
t(release_semaphore(bus, S, SEM_UNDO)); state--;
t(acquire_semaphore(bus, W, SEM_UNDO)); state--;
t(release_semaphore(bus, Q, 0));
} else {
bus->first_poll = 0;
}
state--;
t(zero_semaphore(bus, Q, F(BUS_NOWAIT, IPC_NOWAIT)));
return bus->message;
fail:
saved_errno = errno;
if (state > 1)
release_semaphore(bus, S, SEM_UNDO);
if (state > 0)
acquire_semaphore(bus, W, SEM_UNDO);
if (state < 0)
bus->first_poll = 1;
errno = saved_errno;
return NULL;
}
/**
* Wait for a message to be broadcasted on the bus.
* The caller should make a copy of the received message,
* without freeing the original copy, and parse it in a
* separate thread. When the new thread has started be
* started, the caller of this function should then
* either call `bus_poll_timed` again or `bus_poll_stop`.
*
* @param bus Bus information
* @param timeout The time the operation shall fail with errno set
* to `EAGAIN` if not completed
* @param clockid The ID of the clock the `timeout` is measured with,
* it most be a predictable clock
* @return The received message, `NULL` on error
*/
const char *bus_poll_timed(bus_t *bus, const struct timespec *timeout, clockid_t clockid)
{
int state = 0, saved_errno;
struct timespec delta;
if (!timeout)
return bus_poll(bus, 0);
if (!bus->first_poll) {
t(release_semaphore(bus, W, SEM_UNDO)); state++;
t(acquire_semaphore(bus, S, SEM_UNDO)); state++;
t(zero_semaphore(bus, S, 0));
#ifndef BUS_SEMAPHORES_ARE_SYNCHRONOUS_ME_HARDER
t(zero_semaphore(bus, N, 0));
#endif
t(release_semaphore(bus, S, SEM_UNDO)); state--;
t(acquire_semaphore(bus, W, SEM_UNDO)); state--;
t(release_semaphore(bus, Q, 0));
} else {
bus->first_poll = 0;
}
state--;
DELTA;
t(zero_semaphore_timed(bus, Q, 0, &delta));
return bus->message;
fail:
saved_errno = errno;
if (state > 1)
release_semaphore(bus, S, SEM_UNDO);
if (state > 0)
acquire_semaphore(bus, W, SEM_UNDO);
if (state < 0)
bus->first_poll = 1;
errno = saved_errno;
return NULL;
}
/**
* Change the ownership of a bus
*
* `stat(2)` can be used of the bus's associated file to get the bus's ownership
*
* @param file The pathname of the bus
* @param owner The user ID of the bus's new owner
* @param group The group ID of the bus's new group
* @return 0 on success, -1 on error
*/
int
bus_chown(const char *file, uid_t owner, gid_t group)
{
bus_t bus;
struct semid_ds sem_stat;
struct shmid_ds shm_stat;
int shm_id;
t(bus_open(&bus, file, -1));
t(chown(file, owner, group));
/* chown sem */
t(open_semaphores(&bus));
t(semctl(bus.sem_id, 0, IPC_STAT, &sem_stat));
sem_stat.sem_perm.uid = owner;
sem_stat.sem_perm.gid = group;
t(semctl(bus.sem_id, 0, IPC_SET, &sem_stat));
/* chown shm */
t(shm_id = shmget(bus.key_shm, (size_t)BUS_MEMORY_SIZE, 0));
t(shmctl(shm_id, IPC_STAT, &shm_stat));
shm_stat.shm_perm.uid = owner;
shm_stat.shm_perm.gid = group;
t(shmctl(shm_id, IPC_SET, &shm_stat));
return 0;
fail:
return -1;
}
/**
* Change the permissions for a bus
*
* `stat(2)` can be used of the bus's associated file to get the bus's permissions
*
* @param file The pathname of the bus
* @param mode The permissions of the bus, any permission for a user implies
* full permissions for that user, except only the owner may
* edit the bus's associated file
* @return 0 on success, -1 on error
*/
int
bus_chmod(const char *file, mode_t mode)
{
bus_t bus;
mode_t fmode;
struct semid_ds sem_stat;
struct shmid_ds shm_stat;
int shm_id;
mode = (mode & S_IRWXU) ? (mode | S_IRWXU) : (mode & (mode_t)~S_IRWXU);
mode = (mode & S_IRWXG) ? (mode | S_IRWXG) : (mode & (mode_t)~S_IRWXG);
mode = (mode & S_IRWXO) ? (mode | S_IRWXO) : (mode & (mode_t)~S_IRWXO);
mode &= (S_IWUSR | S_IWGRP | S_IWOTH | S_IRUSR | S_IRGRP | S_IROTH);
fmode = mode & (mode_t)~(S_IWGRP | S_IWOTH);
t(bus_open(&bus, file, -1));
t(chmod(file, fmode));
/* chmod sem */
t(open_semaphores(&bus));
t(semctl(bus.sem_id, 0, IPC_STAT, &sem_stat));
sem_stat.sem_perm.mode = (unsigned short)mode;
t(semctl(bus.sem_id, 0, IPC_SET, &sem_stat));
/* chmod shm */
t(shm_id = shmget(bus.key_shm, (size_t)BUS_MEMORY_SIZE, 0));
t(shmctl(shm_id, IPC_STAT, &shm_stat));
shm_stat.shm_perm.mode = (unsigned short)mode;
t(shmctl(shm_id, IPC_SET, &shm_stat));
return 0;
fail:
return -1;
}