1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
|
#!/usr/bin/env python3
# Copyright © 2014 Mattias Andrée (maandree@member.fsf.org)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# This module implements algorithms for calculating information about the Sun.
import math
import time
SOLAR_ELEVATION_SUNSET_SUNRISE = 0.0
'''
:float The Sun's elevation at sunset and sunrise, measured in degrees
'''
SOLAR_ELEVATION_CIVIL_DUSK_DAWN = -6.0
'''
:float The Sun's elevation at civil dusk and civil dawn, measured in degrees
'''
SOLAR_ELEVATION_NAUTICAL_DUSK_DAWN = -12.0
'''
:float The Sun's elevation at nautical dusk and nautical dawn, measured in degrees
'''
SOLAR_ELEVATION_ASTRONOMICAL_DUSK_DAWN = -18.0
'''
:float The Sun's elevation at astronomical dusk and astronomical dawn, measured in degrees
'''
SOLAR_ELEVATION_RANGE_TWILIGHT = (-18.0, 0.0)
'''
:(float, float) The Sun's lowest and highest elevation during all periods of twilight, measured in degrees
'''
SOLAR_ELEVATION_RANGE_CIVIL_TWILIGHT = (-6.0, 0.0)
'''
:(float, float) The Sun's lowest and highest elevation during civil twilight, measured in degrees
'''
SOLAR_ELEVATION_RANGE_NAUTICAL_TWILIGHT = (-12.0, -6.0)
'''
:(float, float) The Sun's lowest and highest elevation during nautical twilight, measured in degrees
'''
SOLAR_ELEVATION_RANGE_ASTRONOMICAL_TWILIGHT = (-18.0, -12.0)
'''
:(float, float) The Sun's lowest and highest elevation during astronomical twilight, measured in degrees
'''
def sun(latitude, longitude, t = None, low = -6.0, high = 3.0):
'''
Get the visibility of the Sun
@param latitude:float The latitude component of your GPS coordinate
@param longitude:float The longitude component of your GPS coordinate
@param t:float? The time in Julian Centuries, `None` for current time
@param low:float The 100 % night limit elevation of the Sun (highest when not visible)
@param high:float The 100 % day limit elevation of the Sun (lowest while fully visible)
@return :float The visibilty of the Sun, 0 during the night, 1 during the day,
between 0 and 1 during twilight. Other values will not occur.
'''
t = julian_centuries() if t is None else t
e = solar_elevation(latitude, longitude, t)
e = (e - low) / (high - low)
return min(max(0, e), 1)
# The following functions are used to calculate the result for `sun`
# (most of them) but could be used for anything else. There name is
# should tell you enough, `t` (and `noon`) is in Julian centuries
# except for in the convertion methods
def julian_day_to_epoch(t):
'''
Converts a Julian Day timestamp to a POSIX time timestamp
@param t:float The time in Julian Days
@return :float The time in POSIX time
'''
return (t - 2440587.5) * 86400.0
def epoch_to_julian_day(t):
'''
Converts a POSIX time timestamp to a Julian Day timestamp
@param t:float The time in POSIX time
@return :float The time in Julian Days
'''
return t / 86400.0 + 2440587.5
def julian_day_to_julian_centuries(t):
'''
Converts a Julian Day timestamp to a Julian Centuries timestamp
@param t:float The time in Julian Days
@return :float The time in Julian Centuries
'''
return (t - 2451545.0) / 36525.0
def julian_centuries_to_julian_day(t):
'''
Converts a Julian Centuries timestamp to a Julian Day timestamp
@param t:float The time in Julian Centuries
@return :float The time in Julian Days
'''
return t * 36525.0 + 2451545.0
def epoch_to_julian_centuries(t):
'''
Converts a POSIX time timestamp to a Julian Centuries timestamp
@param t:float The time in POSIX time
@return :float The time in Julian Centuries
'''
return julian_day_to_julian_centuries(epoch_to_julian_day(t))
def julian_centuries_to_epoch(t):
'''
Converts a Julian Centuries timestamp to a POSIX time timestamp
@param t:float The time in Julian Centuries
@return :float The time in POSIX time
'''
return julian_day_to_epoch(julian_centuries_to_julian_day(t))
def epoch():
'''
Get current POSIX time
@return :float The current POSIX time
'''
return time.time()
def julian_day():
'''
Get current Julian Day time
@return :float The current Julian Day time
'''
return epoch_to_julian_day(epoch())
def julian_centuries():
'''
Get current Julian Centuries time (100 Julian days since J2000)
@return :float The current Julian Centuries time
'''
return epoch_to_julian_centuries(epoch())
def radians(deg):
'''
Convert an angle from degrees to radians
@param deg:float The angle in degrees
@return :float The angle in radians
'''
return deg * math.pi / 180
def degrees(rad):
'''
Convert an angle from radians to degrees
@param rad:float The angle in radians
@return :float The angle in degrees
'''
return rad * 180 / math.pi
def sun_geometric_mean_longitude(t):
'''
Calculates the Sun's geometric mean longitude
@param t:float The time in Julian Centuries
@return :float The Sun's geometric mean longitude in radians
'''
return radians((0.0003032 * t ** 2 + 36000.76983 * t + 280.46646) % 360)
# CANNIBALISERS and TIME TRAVELERS:
# The result of this function should always be positive, this
# means that after division modulo 360 but before `radians`,
# you will need to add 360 if the value is negative. This can
# only happen if `t` is negative, which can only happen for date
# times before 2000-(01)Jan-01 12:00:00 UTC par division modulo
# implementations with the signess of atleast the left operand.
# More precively, it happens between cirka 1970-(01)Jan-11
# 16:09:02 UTC and cirka -374702470660351740 seconds before
# January 1, 1970 00:00 UTC, which is so far back in time
# it cannot be reliable pinned down to the right year, but it
# is without a shadow of a doubt looooong before the Earth
# was formed, is right up there with the age of the Milky Way
# and the universe itself.
def sun_geometric_mean_anomaly(t):
'''
Calculates the Sun's geometric mean anomaly
@param t:float The time in Julian Centuries
@return :float The Sun's geometric mean anomaly in radians
'''
return radians(-0.0001537 * t ** 2 + 35999.05029 * t + 357.52911)
def earth_orbit_eccentricity(t):
'''
Calculates the Earth's orbit eccentricity
@param t:float The time in Julian Centuries
@return :float The Earth's orbit eccentricity
'''
return -0.0000001267 * t ** 2 - 0.000042037 * t + 0.016708634
def sun_equation_of_centre(t):
'''
Calculates the Sun's equation of the centre, the difference between
the true anomaly and the mean anomaly
@param t:float The time in Julian Centuries
@return :float The Sun's equation of the centre, in radians
'''
a = sun_geometric_mean_anomaly(t)
rc = math.sin(1 * a) * (-0.000014 * t ** 2 - 0.004817 * t + 1.914602)
rc += math.sin(2 * a) * (-0.000101 * t + 0.019993)
rc += math.sin(3 * a) * 0.000289
return radians(rc)
def sun_real_longitude(t):
'''
Calculates the Sun's real longitudinal position
@param t:float The time in Julian Centuries
@return :float The longitude, in radians
'''
rc = sun_geometric_mean_longitude(t)
return rc + sun_equation_of_centre(t)
def sun_apparent_longitude(t):
'''
Calculates the Sun's apparent longitudinal position
@param t:float The time in Julian Centuries
@return :float The longitude, in radians
'''
rc = degrees(sun_real_longitude(t)) - 0.00569
rc -= 0.00478 * math.sin(radians(-1934.136 * t + 125.04))
return radians(rc)
def mean_ecliptic_obliquity(t):
'''
Calculates the mean ecliptic obliquity of the Sun's apparent motion without variation correction
@param t:float The time in Julian Centuries
@return :float The uncorrected mean obliquity, in radians
'''
rc = 0.001813 * t ** 3 - 0.00059 * t ** 2 - 46.815 * t + 21.448
rc = 26 + rc / 60
rc = 23 + rc / 60
return radians(rc)
def corrected_mean_ecliptic_obliquity(t):
'''
Calculates the mean ecliptic obliquity of the Sun's apparent motion with variation correction
@param t:float The time in Julian Centuries
@return :float The mean obliquity, in radians
'''
rc = -1934.136 * t + 125.04
rc = 0.00256 * math.cos(radians(rc))
rc += degrees(mean_ecliptic_obliquity(t))
return radians(rc)
def solar_declination(t):
'''
Calculates the Sun's declination
@param t:float The time in Julian Centuries
@return :float The Sun's declination, in radians
'''
rc = math.sin(corrected_mean_ecliptic_obliquity(t))
rc *= math.sin(sun_apparent_longitude(t))
return math.asin(rc)
def equation_of_time(t):
'''
Calculates the equation of time, the discrepancy between apparent and mean solar time
@param t:float The time in Julian Centuries
@return :float The equation of time, in degrees
'''
l = sun_geometric_mean_longitude(t)
e = earth_orbit_eccentricity(t)
m = sun_geometric_mean_anomaly(t)
y = corrected_mean_ecliptic_obliquity(t)
y = math.tan(y / 2) ** 2
rc = y * math.sin(2 * l)
rc += (4 * y * math.cos(2 * l) - 2) * e * math.sin(m)
rc -= 0.5 * y ** 2 * math.sin(4 * l)
rc -= 1.25 * e ** 2 * math.sin(2 * m)
return 4 * degrees(rc)
def hour_angle_from_elevation(latitude, declination, elevation):
'''
Calculates the solar hour angle from the Sun's elevation
@param longitude:float The longitude in degrees eastwards from Greenwich, negative for westwards
@param declination:float The declination, in degrees
@param hour_angle:float The Sun's elevation, in degrees
@return :float The solar hour angle, in degrees
'''
if elevation == 0:
return 0
rc = math.cos(abs(elevation))
rc -= math.sin(radians(latitude)) * math.sin(declination)
rc /= math.cos(radians(latitude)) * math.cos(declination)
rc = math.acos(rc)
return -rc if (rc < 0) == (elevation < 0) else rc;
def elevation_from_hour_angle(latitude, declination, hour_angle):
'''
Calculates the Sun's elevation from the solar hour angle
@param longitude:float The longitude in degrees eastwards from Greenwich, negative for westwards
@param declination:float The declination, in degrees
@param hour_angle:float The solar hour angle, in degrees
@return :float The Sun's elevation, in degrees
'''
rc = math.cos(radians(latitude))
rc *= math.cos(hour_angle) * math.cos(declination)
rc += math.sin(radians(latitude)) * math.sin(declination)
return math.asin(rc)
def time_of_solar_noon(t, longitude):
'''
Calculates the time of the closest solar noon
@param t:float A time close to the seeked time, in Julian Centuries
@param longitude:float The longitude in degrees eastwards from Greenwich, negative for westwards
@return :float The time, in Julian Centuries, of the closest solar noon
'''
t, rc = julian_centuries_to_julian_day(t), longitude
for (k, m) in ((-360, 0), (1440, -0.5)):
rc = julian_day_to_julian_centuries(t + m + rc / k)
rc = 720 - 4 * longitude - equation_of_time(rc)
return rc
def time_of_solar_elevation(t, noon, latitude, longitude, elevation):
'''
Calculates the time the Sun has a specified apparent elevation at a geographical position
@param t:float A time close to the seeked time, in Julian Centuries
@param noon:float The time of the closest solar noon
@param latitude:float The latitude in degrees northwards from the equator, negative for southwards
@param longitude:float The longitude in degrees eastwards from Greenwich, negative for westwards
@param elevation:float The solar elevation, in degrees
@return :float The time, in Julian Centuries, of the specified elevation
'''
rc = noon
rc, et = solar_declination(rc), equation_of_time(rc)
rc = hour_angle_from_elevation(latitude, rc, elevation)
rc = 720 - 4 * (longitude + degrees(rc)) - et
rc = julian_day_to_julian_centuries(julian_centuries_to_julian_day(t) + rc / 1440)
rc, et = solar_declination(rc), equation_of_time(rc)
rc = hour_angle_from_elevation(latitude, rc, elevation)
rc = 720 - 4 * (longitude + degrees(rc)) - et
return rc
def solar_elevation_from_time(t, latitude, longitude):
'''
Calculates the Sun's elevation as apparent from a geographical position
@param t:float The time in Julian Centuries
@param latitude:float The latitude in degrees northwards from the equator, negative for southwards
@param longitude:float The longitude in degrees eastwards from Greenwich, negative for westwards
@return :float The Sun's apparent at the specified time as seen from the specified position,
measured in degrees
'''
rc = julian_centuries_to_julian_day(t)
rc = (rc - float(int(rc + 0.5)) - 0.5) * 1440
rc = 720 - rc - equation_of_time(t)
rc = radians(rc / 4 - longitude)
return elevation_from_hour_angle(latitude, solar_declination(t), rc)
def solar_elevation(latitude, longitude, t = None):
'''
Calculates the Sun's elevation as apparent from a geographical position
@param latitude:float The latitude in degrees northwards from the equator, negative for southwards
@param longitude:float The longitude in degrees eastwards from Greenwich, negative for westwards
@param t:float? The time in Julian Centuries, `None` for the current time
@return :float The Sun's apparent at the specified time as seen from the specified position,
measured in degrees
'''
rc = julian_centuries() if t is None else t
rc = solar_elevation_from_time(rc, latitude, longitude)
return degrees(rc)
# Reversing `solar_elevation` is unfeasible, so we iterative methods
def future_past_elevation(delta, latitude, longitude, elevation, t = None):
'''
Predict the time point of the next or previous time the Sun reaches or reached a specific elevation
@param delta:float Iteration step size, negative for past event, positive for future event
@param latitude:float The latitude in degrees northwards from the equator, negative for southwards
@param longitude:float The longitude in degrees eastwards from Greenwich, negative for westwards
@param elevation:float The elevation of interest
@param t:float? The time in Julian Centuries, `None` for the current time
'''
epsilon = 0.000001
t = julian_centuries() if t is None else t
t1 = t2 = t
e1 = e0 = solar_elevation(latitude, longitude, t)
while True:
if abs(t2 - t) > 0.01:
return None
t2 += delta
e2 = solar_elevation(latitude, longitude, t2)
if (e1 <= elevation <= e2) or ((elevation >= e1 >= e2) and (elevation <= e0)):
break
if (e1 >= elevation >= e2) or ((elevation <= e1 <= e2) and (elevation >= e0)):
break
t1 = t2
e2 = e1
for _itr in range(1000):
tm = (t1 + t2) / 2
e1 = solar_elevation(latitude, longitude, t1)
e2 = solar_elevation(latitude, longitude, t2)
em = solar_elevation(latitude, longitude, tm)
if abs(e1 - e2) < epsilon:
return tm if abs(em - elevation) < epsilon else None
if e1 < e2:
if elevation < em:
t2 = tm
else:
t1 = tm
elif e1 > e2:
if elevation > em:
t2 = tm
else:
t1 = tm
return None
def future_elevation(latitude, longitude, elevation, t = None):
'''
Predict the time point of the next time the Sun reaches a specific elevation
@param latitude:float The latitude in degrees northwards from the equator, negative for southwards
@param longitude:float The longitude in degrees eastwards from Greenwich, negative for westwards
@param elevation:float The elevation of interest
@param t:float? The time in Julian Centuries, `None` for the current time
'''
return future_past_elevation(0.01 / 2000, latitude, longitude, elevation, t)
def past_elevation(latitude, longitude, elevation, t = None):
'''
Predict the time point of the previous time the Sun reached a specific elevation
@param latitude:float The latitude in degrees northwards from the equator, negative for southwards
@param longitude:float The longitude in degrees eastwards from Greenwich, negative for westwards
@param elevation:float The elevation of interest
@param t:float? The time in Julian Centuries, `None` for the current time
'''
return future_past_elevation(0.01 / -2000, latitude, longitude, elevation, t)
|