summaryrefslogtreecommitdiffstats
path: root/src/curve.py
blob: cac2b5366df7747f84eb5c17d468f78f8926fe91 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
#!/usr/bin/env python3

# Copyright © 2014  Mattias Andrée (maandree@member.fsf.org)
# 
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
# 
# You should have received a copy of the GNU Affero General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
import math

from colour import *



# /usr/share/blueshift
DATADIR = 'res'

# Mapping input and output maximum values + 1
i_size = 2 ** 8
o_size = 2 ** 16

# Red, green and blue curves
r_curve = [i / (i_size - 1) for i in range(i_size)]
g_curve = [i / (i_size - 1) for i in range(i_size)]
b_curve = [i / (i_size - 1) for i in range(i_size)]



clip_result = True
'''
Set to `False` if you want to allow value overflow rather than clipping,
doing so can create visual artifacts
'''


def curves(r, g, b):
    '''
    Generate a tuple of curve–parameter pairs
    
    @param   r  The red parameter
    @param   g  The green parameter
    @param   b  The blue parameter
    @return     `((r_curve, r), (g_curve, g), (b_curve, b))`
    '''
    return ((r_curve, r), (g_curve, g), (b_curve, b))



def series_d(temperature):
    '''
    Calculate the colour for a blackbody temperature
    
    Using `lambda t : divide_by_maximum(series_d(t))` as the algorithm is better than just `series_d`
    
    @param   temperature:float       The blackbody temperature in kelvins, must be inside [4000, 7000]
    @return  :(float, float, float)  The red, green and blue components of the white point
    '''
    x = 0
    ks = ((0.244063, 0), (0.09911, 1), (2.9678, 2), (-4.6070, 3))
    if temperature > 7000:
        ks = ((0.237040, 0), (0.24748, 1), (1.9018, 2), (-2.0064, 3))
    for (k, d) in ks:
        x += k * 10 ** (d * 3) / temperature ** d
    y = 2.870 * x - 3.000 * x ** 2 - 0.275
    return ciexyy_to_srgb(x, y, 1.0)


def simple_whitepoint(temperature):
    '''
    Calculate the colour for a blackbody temperature using a simple algorithm
    
    @param   temperature:float       The blackbody temperature in kelvins, not guaranteed for values outside [1000, 40000]
    @return  :(float, float, float)  The red, green and blue components of the white point
    '''
    r, g, b = 1, 1, 1
    temp = temperature / 100
    if temp > 66:
        temp -= 60
        r = 1.292936186 * temp ** 0.1332047592
        g = 1.129890861 * temp ** -0.0755148492
    else:
        g = 0.390081579 * math.log(temp) - 0.631841444
        if temp <= 19:
            b = 0
        elif temp < 66:
            b = 0.543206789 * math.log(temp - 10) - 1.196254089
    return (r, g, b)


cmf_2deg_cache = None
def cmf_2deg(temperature):
    '''
    Calculate the colour for a blackbody temperature using raw CIE 1931 2 degree CMF data with interpolation
    
    Using `lambda t : divide_by_maximum(cmf_2deg(t))` as the algorithm is better than just `cmf_2deg`
    
    @param   temperature:float       The blackbody temperature in kelvins, clipped to [1000, 40000]
    @return  :(float, float, float)  The red, green and blue components of the white point
    '''
    global cmf_2deg_cache
    if cmf_2deg_cache is None:
        with open(DATADIR + '/2deg', 'rb') as file:
            cmf_2deg_cache = file.read()
        cmf_2deg_cache = cmf_2deg_cache.decode('utf-8', 'error').split('\n')
        cmf_2deg_cache = filter(lambda x : not x == '', cmf_2deg_cache)
        cmf_2deg_cache = [[float(x) for x in x_y.split(' ')] for x_y in cmf_2deg_cache]
    temp = min(max(1000, temperature), 40000)
    x, y = 0, 0
    if (temp % 100) == 0:
        (x, y) = cmf_2deg_cache[int((temp - 1000) // 100)]
    else:
        temp -= 1000
        (x1, y1) = cmf_2deg_cache[int(temp // 100)]
        (x2, y2) = cmf_2deg_cache[int(temp // 100 + 1)]
        temp = (temp % 100) / 100
        x = x1 * temp + x2 * (1 - temp)
        y = y1 * temp + y2 * (1 - temp)
    return ciexyy_to_srgb(x, y, 1.0)


cmf_10deg_cache = None
def cmf_10deg(temperature):
    '''
    Calculate the colour for a blackbody temperature using raw CIE 1964 10 degree CMF data with interpolation
    
    Using `lambda t : divide_by_maximum(cmf_10deg(t))` as the algorithm is better than just `cmf_10deg`
    
    @param   temperature:float       The blackbody temperature in kelvins, clipped to [1000, 40000]
    @return  :(float, float, float)  The red, green and blue components of the white point
    '''
    global cmf_10deg_cache
    if cmf_10deg_cache is None:
        with open(DATADIR + '/10deg', 'rb') as file:
            cmf_10deg_cache = file.read()
        cmf_10deg_cache = cmf_10deg_cache.decode('utf-8', 'error').split('\n')
        cmf_10deg_cache = filter(lambda x : not x == '', cmf_10deg_cache)
        cmf_10deg_cache = [[float(x) for x in x_y.split(' ')] for x_y in cmf_10deg_cache]
    temp = min(max(1000, temperature), 40000)
    x, y = 0, 0
    if (temp % 100) == 0:
        (x, y) = cmf_10deg_cache[int((temp - 1000) // 100)]
    else:
        temp -= 1000
        (x1, y1) = cmf_10deg_cache[int(temp // 100)]
        (x2, y2) = cmf_10deg_cache[int(temp // 100 + 1)]
        temp = (temp % 100) / 100
        x = x1 * temp + x2 * (1 - temp)
        y = y1 * temp + y2 * (1 - temp)
    return ciexyy_to_srgb(x, y, 1)


redshift_cache, redshift_old_cache = None, None
def redshift(temperature, old_version = False, linear_interpolation = False):
    '''
    Calculate the colour for a blackbody temperature using same data as in the program redshift
    
    @param   temperature:float          The blackbody temperature in kelvins, clipped to [1000, 25100] (100 more kelvins than in redshift)
    @param   old_version:bool           Whether to the method used in redshift<=1.8, in which case
                                        `temperature` is clipped to [1000, 10000] (1 more kelvin than in redshift)
    @param   linear_interpolation:bool  Whether to interpolate one linear RGB instead of sRGB
    @return  :(float, float, float)     The red, green and blue components of the white point
    '''
    global redshift_cache, redshift_old_cache
    cache = None
    if not old_version:
        if redshift_cache is None:
            with open(DATADIR + '/redshift', 'rb') as file:
                redshift_cache = file.read()
            redshift_cache = redshift_cache.decode('utf-8', 'error').split('\n')
            redshift_cache = filter(lambda x : not x == '', redshift_cache)
            redshift_cache = [[float(x) for x in r_g_b.split(' ')] for r_g_b in redshift_cache]
        cache = redshift_cache
    else:
        if redshift_old_cache is None:
            with open(DATADIR + '/redshift_old', 'rb') as file:
                redshift_old_cache = file.read()
            redshift_old_cache = redshift_old_cache.decode('utf-8', 'error').split('\n')
            redshift_old_cache = filter(lambda x : not x == '', redshift_old_cache)
            redshift_old_cache = [[float(x) for x in r_g_b.split(' ')] for r_g_b in redshift_old_cache]
        cache = redshift_old_cache
    temp = min(max(1000, temperature), 10000 if old_version else 25100)
    r, g, b = 1, 1, 1
    if (temp % 100) == 0:
        (r, g, b) = cache[int((temp - 1000) // 100)]
    else:
        temp -= 1000
        (r1, g1, b1) = cache[int(temp // 100)]
        (r2, g2, b2) = cache[int(temp // 100 + 1)]
        temp = (temp % 100) / 100
        if linear_interpolation:
            (r, g, b) = standard_to_linear(r, g, b)
        r = r1 * temp + r2 * (1 - temp)
        g = g1 * temp + g2 * (1 - temp)
        b = b1 * temp + b2 * (1 - temp)
        if linear_interpolation:
            (r, g, b) = linear_to_standard(r, g, b)
    return (r, g, b)



def temperature(temperature, algorithm):
    '''
    Change colour temperature according to the CIE illuminant series D
    
    @param  temperature:float                        The blackbody temperature in kelvins
    @param  algorithm:(float)→(float, float, float)  Algorithm for calculating a white point, for example `series_d` or `simple_whitepoint`
    '''
    if temperature == 6500:
        return
    (r, g, b) = algorithm(temperature)
    rgb_brightness(r, g, b)


def divide_by_maximum(rgb):
    '''
    Divide all colour components by the value of the most prominent colour component
    
    @param   rgb:[float, float, float]  The three colour components
    @return  :[float, float, float]     The three colour components divided by the maximum
    '''
    m = max([abs(x) for x in rgb])
    if m != 0:
        return [x / m for x in rgb]
    return rgb


def clip_whitepoint(rgb):
    '''
    Clip all colour components to fit inside [0, 1]
    
    @param   rgb:[float, float, float]  The three colour components
    @return  :[float, float, float]     The three colour components clipped
    '''
    return [min(max(0, x), 1) for x in rgb]


def rgb_contrast(r, g = None, b = None):
    '''
    Apply contrast correction on the colour curves using sRGB
    
    @param  r:float   The contrast parameter for the red curve
    @param  g:float?  The contrast parameter for the green curve, defaults to `r` if `None`
    @param  b:float?  The contrast parameter for the blue curve, defaults to `r` if `None`
    '''
    if g is None:  g = r
    if b is None:  b = r
    for (curve, level) in curves(r, g, b):
        if not level == 1.0:
            for i in range(i_size):
                curve[i] = (curve[i] - 0.5) * level + 0.5


def cie_contrast(level):
    '''
    Apply contrast correction on the colour curves using CIE xyY
    
    @param  level:float  The brightness parameter
    '''
    if not level == 1.0:
        for i in range(i_size):
            (x, y, Y) = srgb_to_ciexyy(r_curve[i], g_curve[i], b_curve[i])
            (r_curve[i], g_curve[i], b_curve[i]) = ciexyy_to_srgb(x, y, (Y - 0.5) * level + 0.5)


def rgb_brightness(r, g = None, b = None):
    '''
    Apply brightness correction on the colour curves using sRGB
    
    @param  r:float   The brightness parameter for the red curve
    @param  g:float?  The brightness parameter for the green curve, defaults to `r` if `None`
    @param  b:float?  The brightness parameter for the blue curve, defaults to `r` if `None`
    '''
    if g is None:  g = r
    if b is None:  b = r
    for (curve, level) in curves(r, g, b):
        if not level == 1.0:
            for i in range(i_size):
                curve[i] *= level


def cie_brightness(level):
    '''
    Apply brightness correction on the colour curves using CIE xyY
    
    @param  level:float  The brightness parameter
    '''
    if not level == 1.0:
        for i in range(i_size):
            (x, y, Y) = srgb_to_ciexyy(r_curve[i], g_curve[i], b_curve[i])
            (r_curve[i], g_curve[i], b_curve[i]) = ciexyy_to_srgb(x, y, Y * level)


def linearise(r = True, g = None, b = None):
    '''
    Convert the curves from formatted in standard RGB to linear RGB
    
    @param  r:bool   Whether to convert the red colour curve
    @param  g:bool?  Whether to convert the green colour curve, defaults to `r` if `None`
    @param  b:bool?  Whether to convert the blue colour curve, defaults to `r` if `None`
    '''
    if g is None:  g = r
    if b is None:  b = r
    for i in range(i_size):
        sr, sg, sb = r_curve[i], g_curve[i], b_curve[i]
        (lr, lg, lb) = standard_to_linear(sr, sg, sb)
        r_curve[i], g_curve[i], b_curve[i] = (lr if r else sr), (lg if g else sg), (lb if b else sb)


def standardise(r = True, g = None, b = None):
    '''
    Convert the curves from formatted in linear RGB to standard RGB
    
    @param  r:bool   Whether to convert the red colour curve
    @param  g:bool?  Whether to convert the green colour curve, defaults to `r` if `None`
    @param  b:bool?  Whether to convert the blue colour curve, defaults to `r` if `None`
    '''
    if g is None:  g = r
    if b is None:  b = r
    for i in range(i_size):
        lr, lg, lb = r_curve[i], g_curve[i], b_curve[i]
        (sr, sg, sb) = linear_to_standard(lr, lg, lb)
        r_curve[i], g_curve[i], b_curve[i] = (sr if r else lr), (sg if g else lg), (sb if b else lb)


def gamma(r, g = None, b = None):
    '''
    Apply gamma correction on the colour curves
    
    @param  r:float   The gamma parameter for the red curve
    @param  g:float?  The gamma parameter for the green curve, defaults to `r` if `None`
    @param  b:float?  The gamma parameter for the blue curve, defaults to `r` if `None`
    '''
    if g is None:  g = r
    if b is None:  b = r
    for (curve, level) in curves(r, g, b):
        if not level == 1.0:
            for i in range(i_size):
                curve[i] **= 1 / level

    
def negative(r = True, g = None, b = None):
    '''
    Revese the colour curves (negative image with gamma preservation)
    
    @param  r:bool   Whether to invert the red curve
    @param  g:bool?  Whether to invert the green curve, defaults to `r` if `None`
    @param  b:bool?  Whether to invert the blue curve, defaults to `r` if `None`
    '''
    if g is None:  g = r
    if b is None:  b = r
    for (curve, setting) in curves(r, g, b):
        if setting:
            for i in range(i_size // 2):
                j = i_size - 1 - i
                curve[i], curve[j] = curve[j], curve[i]


def rgb_invert(r = True, g = None, b = None):
    '''
    Invert the colour curves (negative image with gamma invertion), using sRGB
    
    @param  r:bool   Whether to invert the red curve
    @param  g:bool?  Whether to invert the green curve, defaults to `r` if `None`
    @param  b:bool?  Whether to invert the blue curve, defaults to `r` if `None`
    '''
    if g is None:  g = r
    if b is None:  b = r
    for (curve, setting) in curves(r, g, b):
        if setting:
            for i in range(i_size):
                curve[i] = 1 - curve[i]


def cie_invert(r = True, g = None, b = None):
    '''
    Invert the colour curves (negative image with gamma invertion), using CIE xyY
    
    @param  r:bool   Whether to invert the red curve
    @param  g:bool?  Whether to invert the green curve, defaults to `r` if `None`
    @param  b:bool?  Whether to invert the blue curve, defaults to `r` if `None`
    '''
    if g is None:  g = r
    if b is None:  b = r
    for (curve, setting) in curves(r, g, b):
        if setting:
            for i in range(i_size):
                (x, y, Y) = srgb_to_ciexyy(r_curve[i], g_curve[i], b_curve[i])
                (r_curve[i], g_curve[i], b_curve[i]) = ciexyy_to_srgb(x, y, 1 - Y)

    
def sigmoid(r, g, b):
    '''
    Apply S-curve correction on the colour curves.
    This is intended for fine tuning LCD monitors,
    4.5 is good value start start testing at.
    You would probably like to use rgb_limits before
    this to adjust the black point as that is the
    only why to adjust the black point on many LCD
    monitors.
    
    @param  r:float?  The sigmoid parameter for the red curve
    @param  g:float?  The sigmoid parameter for the green curve
    @param  b:float?  The sigmoid parameter for the blue curve
    '''
    for (curve, level) in curves(r, g, b):
        if level is not None:
            for i in range(i_size):
                try:
                    curve[i] = 0.5 - math.log(1 / curve[i] - 1) / level
                except:
                    curve[i] = curve[i];


def rgb_limits(r_min, r_max, g_min = None, g_max = None, b_min = None, b_max = None):
    '''
    Changes the black point and the white point, using sRGB
    
    @param  r_min:float   The red component value of the black point
    @param  r_max:float   The red component value of the white point
    @param  g_min:float?  The green component value of the black point, defaults to `r_min`
    @param  g_max:float?  The green component value of the white point, defaults to `r_max`
    @param  b_min:float?  The blue component value of the black point, defaults to `r_min`
    @param  b_max:float?  The blue component value of the white point, defaults to `r_max`
    '''
    if g_min is None:  g_min = r_min
    if g_max is None:  g_max = r_max
    if b_min is None:  b_min = r_min
    if b_max is None:  b_max = r_max
    for (curve, (level_min, level_max)) in curves((r_min, r_max), (g_min, g_max), (b_min, b_max)):
        if (level_min != 0) or (level_max != 1):
            for i in range(i_size):
                curve[i] = curve[i] * (level_max - level_min) + level_min


def cie_limits(level_min, level_max):
    '''
    Changes the black point and the white point, using CIE xyY
    
    @param  level_min:float   The brightness of the black point
    @param  level_max:float   The brightness of the white point
    '''
    if (level_min != 0) or (level_max != 1):
        for i in range(i_size):
            (x, y, Y) = srgb_to_ciexyy(r_curve[i], g_curve[i], b_curve[i])
            Y = Y * (level_max - level_min) + level_min
            (r_curve[i], g_curve[i], b_curve[i]) = ciexyy_to_srgb(x, y, Y)


def manipulate(r, g = None, b = None):
    '''
    Manipulate the colour curves using a lambda function
    
    @param  r:(float)→float   Lambda function to manipulate the red colour curve
    @param  g:(float)?→float  Lambda function to manipulate the green colour curve, defaults to `r` if `None`
    @param  b:(float)?→float  Lambda function to manipulate the blue colour curve, defaults to `r` if `None`
    
    The lambda functions thats a colour value and maps it to a new colour value.
    For example, if the red value 0.5 is already mapped to 0.25, then if the function
    maps 0.25 to 0.5, the red value 0.5 will revert back to being mapped to 0.5.
    '''
    if g is None:  g = r
    if b is None:  b = r
    for (curve, f) in curves(r, g, b):
        for i in range(i_size):
            curve[i] = f(curve[i])


def cie_manipulate(f):
    '''
    Manipulate the colour curves using a lambda function on the CIE xyY colour space
    
    @param  f:(float)?→float   Lambda function to manipulate the Y component, nothing is done if `f` is `None`
    
    The lambda functions thats a colour value and maps it to a new illumination value.
    For example, if the value 0.5 is already mapped to 0.25, then if the function
    maps 0.25 to 0.5, the value 0.5 will revert back to being mapped to 0.5.
    '''
    if f is not None:
        for i in range(i_size):
            (x, y, Y) = srgb_to_ciexyy(r_curve[i], g_curve[i], b_curve[i])
            (r_curve[i], g_curve[i], b_curve[i]) = ciexyy_to_srgb(x, y, f(Y))


def lower_resolution(rx_colours = None, ry_colours = None, gx_colours = None, gy_colours = None, bx_colours = None, by_colours = None):
    '''
    Emulates low colour resolution
    
    @param  rx_colours:int?  The number of colours to emulate on the red encoding axis, `i_size` if `None`
    @param  ry_colours:int?  The number of colours to emulate on the red output axis, `o_size` if `None`
    @param  gx_colours:int?  The number of colours to emulate on the green encoding axis, `rx_colours` of `None`
    @param  gy_colours:int?  The number of colours to emulate on the green output axis, `ry_colours` if `None`
    @param  bx_colours:int?  The number of colours to emulate on the blue encoding axis, `rx_colours` if `None`
    @param  by_colours:int?  The number of colours to emulate on the blue output axis, `rg_colours` if `None`
    '''
    if rx_colours is None:  rx_colours = i_size
    if ry_colours is None:  ry_colours = o_size
    if gx_colours is None:  gx_colours = rx_colours
    if gy_colours is None:  gy_colours = ry_colours
    if bx_colours is None:  bx_colours = rx_colours
    if by_colours is None:  by_colours = ry_colours
    r_colours = (rx_colours, ry_colours)
    g_colours = (gx_colours, gy_colours)
    b_colours = (bx_colours, by_colours)
    for i_curve, (x_colours, y_colours) in curves(r_colours, g_colours, b_colours):
        if (x_colours == i_size) and (y_colours == o_size):
            continue
        o_curve = [0] * i_size
        x_, y_, i_ = x_colours - 1, y_colours - 1, i_size - 1
        for i in range(i_size):
            x = int(i * x_colours / i_size)
            x = int(x * i_ / x_)
            y = int(i_curve[x] * y_ + 0.5)
            o_curve[i] = y / y_
        i_curve[:] = o_curve


def start_over():
    '''
    Reverts all colours curves to identity mappings.
    This intended for multi-monitor setups with different curves on each monitor.
    If you have a multi-monitor setups without different curves then you have not
    calibrated the monitors or you have awesome monitors that support hardware
    gamma correction.
    '''
    for i in range(i_size):
        v = i / (i_size - 1)
        r_curve[i] = v
        g_curve[i] = v
        b_curve[i] = v


def clip(r = True, g = None, b = None):
    '''
    Clip all values below the actual minimum and above actual maximums
    
    @param  r:bool   Whether to clip the red colour curve
    @param  g:bool?  Whether to clip the green colour curve, defaults to `r` if `None`
    @param  b:bool?  Whether to clip the blue colour curve, defaults to `r` if `None`
    '''
    for curve, action in curves(r, r if g is None else g, r if b is None else b):
        if action:
            for i in range(i_size):
                curve[i] = min(max(0.0, curve[i]), 1.0)