1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
#!/usr/bin/env python3
# Copyright © 2014 Mattias Andrée (maandree@member.fsf.org)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import math
from colour import *
# /usr/share/blueshift
DATADIR = '.'
# Mapping input and output maximum values + 1
i_size = 2 ** 8
o_size = 2 ** 16
# Red, green and blue curves
r_curve = [i / (i_size - 1) for i in range(i_size)]
g_curve = [i / (i_size - 1) for i in range(i_size)]
b_curve = [i / (i_size - 1) for i in range(i_size)]
clip_result = True
'''
Set to `False` if you want to allow value overflow rather than clipping,
doing so can create visual artifacts
'''
def curves(r, g, b):
'''
Generate a tuple of curve–parameter pairs
@param r The red parameter
@param g The green parameter
@param b The blue parameter
@return `((r_curve, r), (g_curve, g), (b_curve, b))`
'''
return ((r_curve, r), (g_curve, g), (b_curve, b))
def series_d(temperature):
'''
Calculate the colour for a blackbody temperature
@param temperature:float The blackbody temperature in kelvins, must be inside [4000, 7000]
@return :(float, float, float) The red, green and blue components of the white point
'''
x = 0
ks = ((0.244063, 0), (0.09911, 1), (2.9678, 2), (-4.6070, 3))
if temperature > 7000:
ks = ((0.237040, 0), (0.24748, 1), (1.9018, 2), (-2.0064, 3))
for (k, d) in ks:
x += k * 10 ** (d * 3) / temperature ** d
y = 2.870 * x - 3.000 * x ** 2 - 0.275
return ciexy_to_srgb(x, y, 1.0)
def simple_whitepoint(temperature):
'''
Calculate the colour for a blackbody temperature using a simple, but inaccurate, algorithm
@param temperature:float The blackbody temperature in kelvins, not guaranteed for values outside [1000, 40000]
@return :(float, float, float) The red, green and blue components of the white point
'''
r, g, b = 1, 1, 1
temp = temperature / 100
if temp > 66:
temp -= 60
r = 1.292936186 * temp ** 0.1332047592
g = 1.129890861 * temp ** -0.0755148492
else:
g = 0.390081579 * math.log(temp) - 0.631841444
if temp <= 19:
b = 0
elif temp < 66:
b = 0.543206789 * math.log(temp - 10) - 1.196254089
return (r, g, b)
cmf_2deg_cache = None
def cmf_2deg(temperature):
'''
Calculate the colour for a blackbody temperature using raw CIE 1931 2 degree CMF data with interpolation
Using `lambda t : divide_by_maximum(cmf_2deg(t))` as the colour algorithm is better than just `cmf_2deg`
@param temperature:float The blackbody temperature in kelvins, clipped to [1000, 40000]
@return :(float, float, float) The red, green and blue components of the white point
'''
global cmf_2deg_cache
if cmf_2deg_cache is None:
with open(DATADIR + '/2deg', 'rb') as file:
cmf_2deg_cache = file.read()
cmf_2deg_cache = cmf_2deg_cache.decode('utf-8', 'error').split('\n')
cmf_2deg_cache = filter(lambda x : not x == '', cmf_2deg_cache)
cmf_2deg_cache = [[float(x) for x in x_y.split(' ')] for x_y in cmf_2deg_cache]
temp = min(max(1000, temperature), 40000)
x, y = 0, 0
if (temp % 100) == 0:
(x, y) = cmf_2deg_cache[(temp - 1000) // 100]
else:
temp -= 1000
(x1, y1) = cmf_2deg_cache[temp // 100]
(x2, y2) = cmf_2deg_cache[temp // 100 + 1]
temp = (temp % 100) / 100
x = x1 * temp + x2 * (1 - temp)
y = y1 * temp + y2 * (1 - temp)
return ciexyy_to_srgb(x, y, 1.0)
cmf_10deg_cache = None
def cmf_10deg(temperature):
'''
Calculate the colour for a blackbody temperature using raw CIE 1964 10 degree CMF data with interpolation
Using `lambda t : divide_by_maximum(cmf_10deg(t))` as the colour algorithm is better than just `cmf_10deg`
@param temperature:float The blackbody temperature in kelvins, clipped to [1000, 40000]
@return :(float, float, float) The red, green and blue components of the white point
'''
global cmf_10deg_cache
if cmf_10deg_cache is None:
with open(DATADIR + '/10deg', 'rb') as file:
cmf_10deg_cache = file.read()
cmf_10deg_cache = cmf_10deg_cache.decode('utf-8', 'error').split('\n')
cmf_10deg_cache = filter(lambda x : not x == '', cmf_10deg_cache)
cmf_10deg_cache = [[float(x) for x in x_y.split(' ')] for x_y in cmf_10deg_cache]
temp = min(max(1000, temperature), 40000)
x, y = 0, 0
if (temp % 100) == 0:
(x, y) = cmf_10deg_cache[(temp - 1000) // 100]
else:
temp -= 1000
(x1, y1) = cmf_10deg_cache[temp // 100]
(x2, y2) = cmf_10deg_cache[temp // 100 + 1]
temp = (temp % 100) / 100
x = x1 * temp + x2 * (1 - temp)
y = y1 * temp + y2 * (1 - temp)
return ciexyy_to_srgb(x, y, 1)
def temperature(temperature, algorithm):
'''
Change colour temperature according to the CIE illuminant series D
@param temperature:float The blackbody temperature in kelvins
@param algorithm:(float)→(float, float, float) Algorithm for calculating a white point, for example `series_d` or `simple_whitepoint`
'''
if temperature == 6500:
return
(r, g, b) = algorithm(temperature)
rgb_brightness(r, g, b)
def divide_by_maximum(rgb):
'''
Divide all colour components by the value of the most prominent colour component
@param rgb:[float, float, float] The three colour components
@return :[float, float, float] The three colour components divided by the maximum
'''
m = max([abs(x) for x in rgb])
if m != 0:
return [x / m for x in rgb]
return rgb
def clip_whitepoint(rgb):
'''
Clip all colour components to fit inside [0, 1]
@param rgb:[float, float, float] The three colour components
@return :[float, float, float] The three colour components clipped
'''
return [min(max(0, x), 1) for x in rgb]
def rgb_contrast(r, g = None, b = None):
'''
Apply contrast correction on the colour curves using sRGB
@param r:float The contrast parameter for the red curve
@param g:float? The contrast parameter for the green curve, defaults to `r` if `None`
@param b:float? The contrast parameter for the blue curve, defaults to `r` if `None`
'''
if g is None: g = r
if b is None: b = r
for (curve, level) in curves(r, g, b):
if not level == 1.0:
for i in range(i_size):
curve[i] = (curve[i] - 0.5) * level + 0.5
def cie_contrast(level):
'''
Apply contrast correction on the colour curves using CIE xyY
@param level:float The brightness parameter
'''
if not level == 1.0:
for i in range(i_size):
(x, y, Y) = srgb_to_ciexyy(r_curve[i], g_curve[i], b_curve[i])
(r_curve[i], g_curve[i], b_curve[i]) = ciexyy_to_srgb(x, y, (Y - 0.5) * level + 0.5)
def rgb_brightness(r, g = None, b = None):
'''
Apply brightness correction on the colour curves using sRGB
@param r:float The brightness parameter for the red curve
@param g:float? The brightness parameter for the green curve, defaults to `r` if `None`
@param b:float? The brightness parameter for the blue curve, defaults to `r` if `None`
'''
if g is None: g = r
if b is None: b = r
for (curve, level) in curves(r, g, b):
if not level == 1.0:
for i in range(i_size):
curve[i] *= level
def cie_brightness(level):
'''
Apply brightness correction on the colour curves using CIE xyY
@param level:float The brightness parameter
'''
if not level == 1.0:
for i in range(i_size):
(x, y, Y) = srgb_to_ciexyy(r_curve[i], g_curve[i], b_curve[i])
(r_curve[i], g_curve[i], b_curve[i]) = ciexyy_to_srgb(x, y, Y * level)
def linearise():
'''
Convert the curves from formatted in standard RGB to linear RGB
'''
for i in range(i_size):
r, g, b = r_curve[i], g_curve[i], b_curve[i]
(r, g, b) = standard_to_linear(r, g, b)
r_curve[i], g_curve[i], b_curve[i] = r, g, b
def standardise():
'''
Convert the curves from formatted in linear RGB to standard RGB
'''
for i in range(i_size):
r, g, b = r_curve[i], g_curve[i], b_curve[i]
(r, g, b) = linear_to_standard(r, g, b)
r_curve[i], g_curve[i], b_curve[i] = r, g, b
def gamma(r, g = None, b = None):
'''
Apply gamma correction on the colour curves
@param r:float The gamma parameter for the red curve
@param g:float? The gamma parameter for the green curve, defaults to `r` if `None`
@param b:float? The gamma parameter for the blue curve, defaults to `r` if `None`
'''
if g is None: g = r
if b is None: b = r
for (curve, level) in curves(r, g, b):
if not level == 1.0:
for i in range(i_size):
curve[i] **= 1 / level
def negative(r = True, g = None, b = None):
'''
Invert the colour curves (negative image)
@param r:bool Whether to invert the red curve
@param g:bool? Whether to invert the green curve, defaults to `r` if `None`
@param b:bool? Whether to invert the blue curve, defaults to `r` if `None`
'''
if g is None: g = r
if b is None: b = r
for (curve, setting) in curves(r, g, b):
if setting:
for i in range(i_size):
curve[i] = 1 - curve[i]
def sigmoid(r, g, b):
'''
Apply S-curve correction on the colour curves
@param r:float? The sigmoid parameter for the red curve
@param g:float? The sigmoid parameter for the green curve
@param b:float? The sigmoid parameter for the blue curve
'''
for (curve, level) in curves(r, g, b):
if level is not None:
for i in range(i_size):
try:
curve[i] = 0.5 - math.log(1 / curve[i] - 1) / level
except:
curve[i] = 0;
def manipulate(r, g = None, b = None):
'''
Manipulate the colour curves using a lambda function
@param r:(float)→float Lambda function to manipulate the red colour curve
@param g:(float)?→float Lambda function to manipulate the green colour curve, defaults to `r` if `None`
@param b:(float)?→float Lambda function to manipulate the blue colour curve, defaults to `r` if `None`
The lambda functions thats a colour value and maps it to a new colour value.
For example, if the red value 0.5 is already mapped to 0.25, then if the function
maps 0.25 to 0.5, the red value 0.5 will revert back to being mapped to 0.5.
'''
if g is None: g = r
if b is None: b = r
for (curve, f) in curves(r, g, b):
for i in range(i_size):
curve[i] = f(curve[i])
def start_over():
'''
Reverts all colours curves to identity mappings.
This intended for multi-monitor setups with different curves on each monitor.
If you have a multi-monitor setups without different curves then you have not
calibrated the monitors or you have awesome monitors that support hardware
gamma correction.
'''
for i in range(i_size):
v = i / (i_size - 1)
r_curve[i] = v
g_curve[i] = v
b_curve[i] = v
def clip():
'''
Clip all values below the actual minimum and above actual maximums
'''
for curve in (r_curve, g_curve, b_curve):
for i in range(i_size):
curve[i] = min(max(0.0, curve[i]), 1.0)
|