summaryrefslogtreecommitdiffstats
path: root/src/blackbody.py
blob: 3cce2c6426742d36af4e7e8cd96b9f318d543731 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
#!/usr/bin/env python3

# Copyright © 2014  Mattias Andrée (maandree@member.fsf.org)
# 
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
# 
# You should have received a copy of the GNU Affero General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.

# This module implements support for colour temperature based
# calculation of white points

import os
import math

from colour import *



DATADIR = 'res'
'''
:str  The path to program resources, '/usr/share/blueshift' is standard
'''



# None of these colour temperatures are exact or
# guaranteed to even be approximate values. A few
# of them are from Wikipedia, others are from
# very(!) questionable sources.

K_F_LUX_W32_EMBER = 1200
'''
The colour temperature in the Windows port of f.lux named ‘ember’
'''

# Warning: f.lux is nasty software that is extremely
#  negative in the freedom dimension. Values are not
#  verified, they are only acquired from f.lux's
#  “Frequently asked questions”.

K_MATCH_FLAME = 1700
'''
Approximate colour temperature of the flame of a match stick

@ref  https://en.wikipedia.org/wiki/Colour_temperature
'''

K_CANDLE_FLAME = 1850
'''
Approximate colour temperature of the flame of a candle

@ref  https://en.wikipedia.org/wiki/Colour_temperature
'''

K_CANDLELIGHT = K_CANDLE_FLAME
'''
Synonym for `K_CANDLE_FLAME`
'''

K_SUNSET = 1850
'''
Approximate colour temperature of the sunset

@ref  https://en.wikipedia.org/wiki/Colour_temperature
'''

K_SUNRISE = K_SUNSET
'''
Approximate colour temperature of the sunrise

@ref  https://en.wikipedia.org/wiki/Colour_temperature
'''

K_F_LUX_W32_CANDLE = 1900
'''
The colour temperature in the Windows port of f.lux named ‘candle’
'''

K_HIGH_PRESSURE_SODIUM = 2100
'''
Approximate colour temperature of high pressure sodium
'''

K_F_LUX_MAC_CANDLE = 2300
'''
The colour temperature in the Mac OS X and iOS port of f.lux named ‘candle’
'''

K_F_LUX_W32_WARM_INCANDESCENT = 2300
'''
The colour temperature in the Windows port of f.lux named ‘warm incandescent’
'''

K_STANDARD_INCANDESCENT = 2500
'''
Approximate colour of standard incandescent
'''

K_INCANDESCENT = K_STANDARD_INCANDESCENT
'''
Synonym for `K_STANDARD_INCANDESCENT`
'''

K_F_LUX_MAC_TUNGSTEN = 2700
'''
The colour temperature in the Mac OS X and iOS port of f.lux named ‘tungsten’
'''

K_F_LUX_W32_INCANDESCENT = 2700
'''
The colour temperature in the Windows port of f.lux named ‘incandescent’
'''

K_EXTRA_SOFT = 2700
'''
A very soft colour temperature
'''

K_PIANO_PIANO_LUX = K_EXTRA_SOFT
'''
Synonym for `K_EXTRA_SOFT` and `K_PIANO_PIANO`
'''

K_PIANO_PIANO = K_PIANO_PIANO_LUX
'''
Synonym for `K_EXTRA_SOFT` and `K_PIANO_PIANO_LUX`
'''

K_INCANDESCENT_LAMP = (2700 + 3300) / 2
'''
Approximate average colour temperature of incandescent lamps

@ref  https://en.wikipedia.org/wiki/Colour_temperature
'''

K_EARLY_SUNRISE = (2800 + 3200) / 2
'''
Approximate average colour temperature the the sunrise at its early stage
'''

K_LATE_SUNSET = K_EARLY_SUNRISE
'''
Approximate average colour temperature the the sunsun at its late stage
'''

K_WARM_WHITE = 3000
'''
Approximate colour temperature of “warm white”
'''

K_SOFT_WHITE_COMPACT_FLOURESCENT_LAMP = 3000
'''
Approximate colour temperature of soft white compact flourescent lamps

@ref  https://en.wikipedia.org/wiki/Colour_temperature
'''

K_WARM_WHITE_COMPACT_FLOURESCENT_LAMP = K_SOFT_WHITE_COMPACT_FLOURESCENT_LAMP
'''
Synonym for `K_SOFT_WHITE_COMPACT_FLOURESCENT_LAMP`
'''

K_HALOGEN_LIGHT = 3000
'''
Approximate colour temperature of halogen light
'''

K_TUNGSTEN_LIGHT = 3200
'''
Approximate colour temperature of tungsten light
(not to be confused with scheelite)
'''

K_HOUSEHOLD_LIGHT_BULB = K_TUNGSTEN_LIGHT
'''
Approximate colour temperature regular household light bulbs
'''

K_LIGHT_BULB = K_HOUSEHOLD_LIGHT_BULB
'''
Synonym for `K_HOUSEHOLD_LIGHT_BULB`
'''

K_STUDIO_LAMP = K_TUNGSTEN_LIGHT
'''
Approximate colour temperature studio lamps

@ref  https://en.wikipedia.org/wiki/Colour_temperature
'''

K_PHOTOFLOOD = K_STUDIO_LAMP
'''
Approximate colour temperature photoflood

@ref  https://en.wikipedia.org/wiki/Colour_temperature
'''

K_STUDIO_CP_LIGHT = 3350
'''
Approximate colour temperature studio ‘CP’ light

@ref  https://en.wikipedia.org/wiki/Colour_temperature
'''

K_F_LUX_MAC_HALOGEN = 3400
K_F_LUX_W32_HALOGEN = 3400
K_SOFT = 3700
K_PIANO_LUX = K_SOFT
K_PIANO = K_PIANO_LUX
K_MOONLIGHT = (4100 + 4150) / 2
K_COOL_WHITE = 4200
'''
Approximate colour temperature of “cool white”
'''

K_F_LUX_MAC_FLOURESCENT = 4200
K_F_LUX_W32_FLOURESCENT = 4200
K_ELECTRONIC_FLASH_BULB = 4500
K_FLASH_BULB = K_ELECTRONIC_FLASH_BULB
K_D50 = 5000
K_NOON_DAYLIGHT = 5000
K_DIRECT_SUN = K_NOON_DAYLIGHT
K_METAL_HALIDE = 5000
K_HORIZON_DAYLIGHT = 5000
K_TUBULAR_FLUORESCENT_LAMP = 5000
K_COOL_WHITE_COMPACT_FLUORESCENT_LAMPS = 5000
K_DAYLIGHT_WHITE_COMPACT_FLUORESCENT_LAMPS = K_COOL_WHITE_COMPACT_FLUORESCENT_LAMPS
K_F_LUX_MAC_DAYLIGHT = 5000
K_D55 = 5500
K_F_LUX_W32_DAYLIGHT = 5500
K_MODERATELY_SOFT = 5500
K_MEZZO_PIANO_LUX = K_MODERATELY_SOFT
K_MEZZO_PIANO = K_MEZZO_PIANO_LUX
K_CRYSTAL_VERTICAL = 5600
K_CLEAR_MID_DAY = 5600
K_VERTICAL_DAYLIGHT = (5500 + 6000) / 2
K_ELECTRONIC_FLASH = (5500 + 6000) / 2
K_XENON_SHORT_ARC_LAMP = 6200
K_DAYLIGHT = 6500
K_OVERCAST_DAY = 6500
K_D65 = 6500
K_NEUTRAL = K_D65
K_WHITE = K_NEUTRAL
K_MEZZO_LUX = K_NEUTRAL
K_MEZZO = K_MEZZO_LUX
K_SHARP = 7000
K_FORTE_LUX = K_SHARP
K_FORTE = K_FORTE_LUX
K_D75 = 7500
K_BLUE_FILTER = 8000
K_NORTH_LIGHT = 10000
K_EXTRA_SHARP = 10000
K_FORTE_FORTE_LUX = K_EXTRA_SHARP
K_FORTE_FORTE = K_FORTE_FORTE_LUX
K_BLUE_SKY = K_NORTH_LIGHT
K_SKYLIGHT = (9000 + 15000) / 2
K_OUTDOOR_SHADE = K_SKYLIGHT
K_CLEAR_BLUE_POLEWARD_SKY = (15000 + 27000) / 2



def series_d(temperature):
    '''
    Calculate the colour for a blackbody temperature
    
    Using `lambda t : divide_by_maximum(series_d(t))` as the algorithm is better than just `series_d`
    
    @param   temperature:float       The blackbody temperature in kelvins, must be inside [4000, 7000]
    @return  :(float, float, float)  The red, green and blue components of the white point
    '''
    # Get coefficients for calculating the x component
    # of the colour in the CIE xyY colour space
    x, ks = 0, (0.244063, 0.09911, 2.9678, -4.6070)
    if temperature > 7000:
        ks = (0.237040, 0.24748, 1.9018, -2.0064)
    # Calculate the x component of the colour in the CIE xyY colour space
    for d, k in enumerate(ks):
        x += k * 10 ** (d * 3) / temperature ** d
    # Calculate the y component of the colour in the CIE xyY colour space
    y = 2.870 * x - 3.000 * x ** 2 - 0.275
    # Convert to sRGB and return, with full illumination
    return ciexyy_to_srgb(x, y, 1.0)


def simple_whitepoint(temperature):
    '''
    Calculate the colour for a blackbody temperature using a simple algorithm
    
    @param   temperature:float       The blackbody temperature in kelvins, not guaranteed for values outside [1000, 40000]
    @return  :(float, float, float)  The red, green and blue components of the white point
    '''
    r, g, b, temp = 1, 1, 1, temperature / 100
    if temp > 66:
        r = 1.292936186 * (temp - 60) ** 0.1332047592
        g = 1.129890861 * (temp - 60) ** -0.0755148492
    else:
        g = 0.390081579 * math.log(temp) - 0.631841444
        if temp < 66:
            b = 0 if temp <= 19 else 0.543206789 * math.log(temp - 10) - 1.196254089
    return (r, g, b)


cmf_2deg_cache = None
def cmf_2deg(temperature):
    '''
    Calculate the colour for a blackbody temperature using raw CIE 1931 2 degree CMF data with interpolation
    
    Using `lambda t : divide_by_maximum(cmf_2deg(t))` as the algorithm is better than just `cmf_2deg`,
    `lambda t : clip_whitepoint(divide_by_maximum(cmf_2deg(t)))` is even better if you plan to use really
    low temperatures,
    
    @param   temperature:float       The blackbody temperature in kelvins, clipped to [1000, 40000]
    @return  :(float, float, float)  The red, green and blue components of the white point
    '''
    global cmf_2deg_cache
    if cmf_2deg_cache is None:
        # Load, parse and cache lookup table if not cached
        cmf_2deg_cache = get_blackbody_lut('2deg')
    # Calculate whitepoint
    return cmf_xdeg(temperature, cmf_2deg_cache)


cmf_10deg_cache = None
def cmf_10deg(temperature):
    '''
    Calculate the colour for a blackbody temperature using raw CIE 1964 10 degree CMF data with interpolation
    
    Using `lambda t : divide_by_maximum(cmf_10deg(t))` as the algorithm is better than just `cmf_10deg`,
    `lambda t : clip_whitepoint(divide_by_maximum(cmf_10deg(t)))` is even better if you plan to use really
    low temperatures,
    
    @param   temperature:float       The blackbody temperature in kelvins, clipped to [1000, 40000]
    @return  :(float, float, float)  The red, green and blue components of the white point
    '''
    global cmf_10deg_cache
    if cmf_10deg_cache is None:
        # Load, parse and cache lookup table if not cached
        cmf_10deg_cache = get_blackbody_lut('10deg')
    # Calculate whitepoint
    return cmf_xdeg(temperature, cmf_10deg_cache)


def cmf_xdeg(temperature, lut, temp_min = 1000, temp_max = 40000, temp_step = 100):
    '''
    Calculate the colour for a blackbody temperature using
    raw data in the CIE xyY colour space with interpolation
    
    This function is intended as help functions for the two functions above this one in this module
    
    @param   temperature:float             The blackbody temperature in kelvins
    @param   lut:list<[x:float, y:float]>  Raw data lookup table
    @param   temp_min:float                The lowest temperature in the lookup table
    @param   temp_max:float                The highest temperature in the lookup table
    @param   temp_step:float               The interval between the temperatures
    @return  :(r:float, g:float, b:float)  The whitepoint in [0, 1] sRGB
    '''
    # Clip temperature to definition domain and remove offset
    x, y, temp = 0, 0, min(max(temp_min, temperature), temp_max) - temp_min
    if temp % temp_step == 0:
        # Exact temperature is included in the lookup table
        (x, y) = lut[int(temp // temp_step)]
    else:
        # x component floor and y component floor
        floor   = lut[int(temp // temp_step)]
        # x component ceiling and y component ceiling
        ceiling = lut[int(temp // temp_step + 1)]
        # Weight
        temp = (temp % temp_step) / temp_step
        # Interpolation
        (x, y) = [c1 * (1 - temp) + c2 * temp for c1, c2 in zip(floor, ceiling)]
    # Convert to sRGB
    return ciexyy_to_srgb(x, y, 1.0)


redshift_cache, redshift_old_cache = None, None
def redshift(temperature, old_version = False, linear_interpolation = False):
    '''
    Calculate the colour for a blackbody temperature using same data as in the program redshift
    
    @param   temperature:float          The blackbody temperature in kelvins, clipped to [1000, 25100] (100 more kelvins than in redshift)
    @param   old_version:bool           Whether to the method used in redshift<=1.8, in which case
                                        `temperature` is clipped to [1000, 10000] (1 more kelvin than in redshift)
    @param   linear_interpolation:bool  Whether to interpolate one linear RGB instead of sRGB
    @return  :(float, float, float)     The red, green and blue components of the white point
    '''
    global redshift_cache, redshift_old_cache
    # Retrieve cache
    cache = redshift_old_cache if old_version else redshift_cache
    if cache is None:
        # Load and parse lookup table if not cached
        cache = get_blackbody_lut('redshift_old' if old_version else 'redshift')
        # Cache lookup table
        if old_version:  redshift_old_cache = cache
        else:            redshift_cache = cache
    # Clip to definition domain and remove offset
    temp = min(max(1000, temperature), 10000 if old_version else 25100) - 1000
    r, g, b = 1, 1, 1
    if (temp % 100) == 0:
        # Exact temperature is included in the lookup table
        (r, g, b) = cache[int(temp // 100)]
    else:
        # Floor
        rgb1 = cache[int(temp // 100)]
        # Ceiling
        rgb2 = cache[int(temp // 100 + 1)]
        # Weight
        temp = (temp % 100) / 100
        # Interpolation
        if linear_interpolation:
            (rgb1, rgb2) = [standard_to_linear(*rgb) for rgb in (rgb1, rgb2)]
        (r, g, b) = [c1 * (1 - temp) + c2 * temp for c1, c2 in zip(rgb1, rgb2)]
        if linear_interpolation:
            (r, g, b) = linear_to_standard(r, g, b)
    return (r, g, b)



def get_blackbody_lut(filename):
    '''
    Load and parse a blackbody data lookup table
    
    This function is intended as help functions for the functions above this one in this module
    
    @param   filename:str        The filename of the lookup table
    @return  :list<list<float>>  A float matrix of all values in the lookup table
    '''
    # Load lookup table
    lut = None
    with open(DATADIR + os.sep + filename, 'rb') as file:
        lut = file.read().decode('utf-8', 'error').split('\n')
    # Parse lookup table
    return [[float(cell) for cell in line.split(' ')] for line in lut if not line == '']



def divide_by_maximum(rgb):
    '''
    Divide all colour components by the value of the most prominent colour component
    
    @param   rgb:[float, float, float]  The three colour components
    @return  :[float, float, float]     The three colour components divided by the maximum
    '''
    m = max([abs(x) for x in rgb])
    return rgb if m == 0 else [x / m for x in rgb]


def clip_whitepoint(rgb):
    '''
    Clip all colour components to fit inside [0, 1]
    
    @param   rgb:[float, float, float]  The three colour components
    @return  :[float, float, float]     The three colour components clipped
    '''
    return [min(max(0, x), 1) for x in rgb]


def kelvins(temperature): # TODO demo and document this
    '''
    Resolve and colour temperature name
    
    @param   temperature:float|str  The colour temperature
    @return  :float                 The colour temperature
    '''
    # If float (or something we do not allow) return the input
    if not isinstance(temperature, str):
        return temperature
    # Replace punctuation with underscore
    temperature = temperature.replace('.', '_').replace('-', '_').replace(' ', '_')
    # Add prefix and turn into upper case
    temperature = 'K_' + temperature.upper()
    # Evaluate (that is, return the named variable)
    return eval(temperature)