1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
#!/usr/bin/env python3
# Copyright © 2014 Mattias Andrée (maandree@member.fsf.org)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
import math
from colour import *
# /usr/share/blueshift
DATADIR = 'res'
def series_d(temperature):
'''
Calculate the colour for a blackbody temperature
Using `lambda t : divide_by_maximum(series_d(t))` as the algorithm is better than just `series_d`
@param temperature:float The blackbody temperature in kelvins, must be inside [4000, 7000]
@return :(float, float, float) The red, green and blue components of the white point
'''
x = 0
ks = ((0.244063, 0), (0.09911, 1), (2.9678, 2), (-4.6070, 3))
if temperature > 7000:
ks = ((0.237040, 0), (0.24748, 1), (1.9018, 2), (-2.0064, 3))
for (k, d) in ks:
x += k * 10 ** (d * 3) / temperature ** d
y = 2.870 * x - 3.000 * x ** 2 - 0.275
return ciexyy_to_srgb(x, y, 1.0)
def simple_whitepoint(temperature):
'''
Calculate the colour for a blackbody temperature using a simple algorithm
@param temperature:float The blackbody temperature in kelvins, not guaranteed for values outside [1000, 40000]
@return :(float, float, float) The red, green and blue components of the white point
'''
r, g, b = 1, 1, 1
temp = temperature / 100
if temp > 66:
temp -= 60
r = 1.292936186 * temp ** 0.1332047592
g = 1.129890861 * temp ** -0.0755148492
else:
g = 0.390081579 * math.log(temp) - 0.631841444
if temp <= 19:
b = 0
elif temp < 66:
b = 0.543206789 * math.log(temp - 10) - 1.196254089
return (r, g, b)
cmf_2deg_cache = None
def cmf_2deg(temperature):
'''
Calculate the colour for a blackbody temperature using raw CIE 1931 2 degree CMF data with interpolation
Using `lambda t : divide_by_maximum(cmf_2deg(t))` as the algorithm is better than just `cmf_2deg`
@param temperature:float The blackbody temperature in kelvins, clipped to [1000, 40000]
@return :(float, float, float) The red, green and blue components of the white point
'''
global cmf_2deg_cache
if cmf_2deg_cache is None:
with open(DATADIR + '/2deg', 'rb') as file:
cmf_2deg_cache = file.read()
cmf_2deg_cache = cmf_2deg_cache.decode('utf-8', 'error').split('\n')
cmf_2deg_cache = filter(lambda x : not x == '', cmf_2deg_cache)
cmf_2deg_cache = [[float(x) for x in x_y.split(' ')] for x_y in cmf_2deg_cache]
temp = min(max(1000, temperature), 40000)
x, y = 0, 0
if (temp % 100) == 0:
(x, y) = cmf_2deg_cache[int((temp - 1000) // 100)]
else:
temp -= 1000
(x1, y1) = cmf_2deg_cache[int(temp // 100)]
(x2, y2) = cmf_2deg_cache[int(temp // 100 + 1)]
temp = (temp % 100) / 100
x = x1 * (1 - temp) + x2 * temp
y = y1 * (1 - temp) + y2 * temp
return ciexyy_to_srgb(x, y, 1.0)
cmf_10deg_cache = None
def cmf_10deg(temperature):
'''
Calculate the colour for a blackbody temperature using raw CIE 1964 10 degree CMF data with interpolation
Using `lambda t : divide_by_maximum(cmf_10deg(t))` as the algorithm is better than just `cmf_10deg`
@param temperature:float The blackbody temperature in kelvins, clipped to [1000, 40000]
@return :(float, float, float) The red, green and blue components of the white point
'''
global cmf_10deg_cache
if cmf_10deg_cache is None:
with open(DATADIR + '/10deg', 'rb') as file:
cmf_10deg_cache = file.read()
cmf_10deg_cache = cmf_10deg_cache.decode('utf-8', 'error').split('\n')
cmf_10deg_cache = filter(lambda x : not x == '', cmf_10deg_cache)
cmf_10deg_cache = [[float(x) for x in x_y.split(' ')] for x_y in cmf_10deg_cache]
temp = min(max(1000, temperature), 40000)
x, y = 0, 0
if (temp % 100) == 0:
(x, y) = cmf_10deg_cache[int((temp - 1000) // 100)]
else:
temp -= 1000
(x1, y1) = cmf_10deg_cache[int(temp // 100)]
(x2, y2) = cmf_10deg_cache[int(temp // 100 + 1)]
temp = (temp % 100) / 100
x = x1 * (1 - temp) + x2 * temp
y = y1 * (1 - temp) + y2 * temp
return ciexyy_to_srgb(x, y, 1)
redshift_cache, redshift_old_cache = None, None
def redshift(temperature, old_version = False, linear_interpolation = False):
'''
Calculate the colour for a blackbody temperature using same data as in the program redshift
@param temperature:float The blackbody temperature in kelvins, clipped to [1000, 25100] (100 more kelvins than in redshift)
@param old_version:bool Whether to the method used in redshift<=1.8, in which case
`temperature` is clipped to [1000, 10000] (1 more kelvin than in redshift)
@param linear_interpolation:bool Whether to interpolate one linear RGB instead of sRGB
@return :(float, float, float) The red, green and blue components of the white point
'''
global redshift_cache, redshift_old_cache
cache = None
if not old_version:
if redshift_cache is None:
with open(DATADIR + '/redshift', 'rb') as file:
redshift_cache = file.read()
redshift_cache = redshift_cache.decode('utf-8', 'error').split('\n')
redshift_cache = filter(lambda x : not x == '', redshift_cache)
redshift_cache = [[float(x) for x in r_g_b.split(' ')] for r_g_b in redshift_cache]
cache = redshift_cache
else:
if redshift_old_cache is None:
with open(DATADIR + '/redshift_old', 'rb') as file:
redshift_old_cache = file.read()
redshift_old_cache = redshift_old_cache.decode('utf-8', 'error').split('\n')
redshift_old_cache = filter(lambda x : not x == '', redshift_old_cache)
redshift_old_cache = [[float(x) for x in r_g_b.split(' ')] for r_g_b in redshift_old_cache]
cache = redshift_old_cache
temp = min(max(1000, temperature), 10000 if old_version else 25100)
r, g, b = 1, 1, 1
if (temp % 100) == 0:
(r, g, b) = cache[int((temp - 1000) // 100)]
else:
temp -= 1000
(r1, g1, b1) = cache[int(temp // 100)]
(r2, g2, b2) = cache[int(temp // 100 + 1)]
temp = (temp % 100) / 100
if linear_interpolation:
(r, g, b) = standard_to_linear(r, g, b)
r = r1 * (1 - temp) + r2 * temp
g = g1 * (1 - temp) + g2 * temp
b = b1 * (1 - temp) + b2 * temp
if linear_interpolation:
(r, g, b) = linear_to_standard(r, g, b)
return (r, g, b)
def divide_by_maximum(rgb):
'''
Divide all colour components by the value of the most prominent colour component
@param rgb:[float, float, float] The three colour components
@return :[float, float, float] The three colour components divided by the maximum
'''
m = max([abs(x) for x in rgb])
if m != 0:
return [x / m for x in rgb]
return rgb
def clip_whitepoint(rgb):
'''
Clip all colour components to fit inside [0, 1]
@param rgb:[float, float, float] The three colour components
@return :[float, float, float] The three colour components clipped
'''
return [min(max(0, x), 1) for x in rgb]
|