1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
#!/usr/bin/env python3
# Copyright © 2014 Mattias Andrée (maandree@member.fsf.org)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# This module contains auxiliary function.
from curve import *
def translate_to_integers():
'''
Translate the curves from float to integer
@return :(r:list<int>, g:list<int>, b:list<int>) The red curve, the green curve and,
the blue curve mapped to integers
'''
R_curve, G_curve, B_curve = [0] * i_size, [0] * i_size, [0] * i_size
for i_curve, o_curve in ((r_curve, R_curve), (g_curve, G_curve), (b_curve, B_curve)):
for i in range(i_size):
o_curve[i] = int(i_curve[i] * (o_size - 1) + 0.5)
if clip_result:
o_curve[i] = min(max(0, o_curve[i]), (o_size - 1))
return (R_curve, G_curve, B_curve)
def ramps_to_function(r, g, b):
'''
Convert a three colour curves to a function that applies those adjustments
@param r:list<int> The red colour curves as [0, 65535] integers
@param g:list<int> The green colour curves as [0, 65535] integers
@param b:list<int> The blue colour curves as [0, 65535] integers
@return :()→void Function to invoke to apply the curves that the parameters [r, g and b] represents
'''
fp = lambda c : [y / 65535 for y in c]
return functionise((fp(r), fp(g), fp(b)))
def linearly_interpolate_ramp(r, g, b): # TODO demo this
'''
Linearly interpolate ramps to the size of the output axes
@param r:list<float> The red colour curves
@param g:list<float> The green colour curves
@param b:list<float> The blue colour curves
@return :(r:list<float>, g:list<float>, b:list<float>) The input parameters extended to sizes of `o_size`,
or their original size, whatever is larger.
'''
C = lambda c : c[:] if len(c) >= o_size else ([None] * o_size)
R, G, B = C(r), C(g), C(b)
for small, large in ((r, R), (g, G), (b, B)):
small_, large_ = len(small) - 1, len(large) - 1
# Only interpolate if scaling up
if large_ > small_:
for i in range(len(large)):
# Scaling
j = i * small_ / large_
# Floor, weight, ceiling
j, w, k = int(j), j % 1, min(int(j) + 1, small_)
# Interpolation
large[i] = small[j] * (1 - w) + small[k] * w
return (R, G, B)
def cubicly_interpolate_ramp(r, g, b): # TODO demo this
'''
Interpolate ramps to the size of the output axes using cubic Hermite spline
@param r:list<float> The red colour curves
@param g:list<float> The green colour curves
@param b:list<float> The blue colour curves
@return :(r:list<float>, g:list<float>, b:list<float>) The input parameters extended to sizes of `o_size`,
or their original size, whatever is larger.
'''
C = lambda c : c[:] if len(c) >= o_size else ([None] * o_size)
R, G, B = C(r), C(g), C(b)
# Basis functions
h00 = lambda t : (1 + 2 * t) * (1 - t) ** 2
h01 = lambda t : t * (1 - t) ** 2
h10 = lambda t : t ** 2 * (3 - 2 * t)
h11 = lambda t : t ** 2 * (t - 1)
def tangent(values, index, last):
'''
Calculate the tangent at a point
@param values:list<float> Mapping from points to values
@param index:int The point
@param last:int The last point
@return :float The tangent at the point `index`
'''
if last == 0: return 0
if index == 0: return values[1] - values[0]
if index == last: return values[last] - values[last - 1]
return (values[index + 1] - values[index - 1]) / 2
# Interpolate each curve
for small, large in ((r, R), (g, G), (b, B)):
small_, large_ = len(small) - 1, len(large) - 1
# Only interpolate if scaling up
if large_ > small_:
for i in range(len(large)):
# Scaling
j = i * small_ / large_
# Floor, weight, ceiling
j, w, k = int(j), j % 1, min(int(j) + 1, small_)
# Points
pj, pk = small[j], small[k]
# Tangents
mj, mk = tangent(small, j, small_), tangent(small, k, small_)
# Interpolation
large[i] = h00(w) * pj + h10(w) * mj + h01(w) * pk + h11(w) * mk
## Check local monotonicity
eliminate_halos(r, g, b, R, G, B)
return (R, G, B)
def polynomially_interpolate_ramp(r, g, b): # TODO Speedup, demo and document this
'''
Polynomially interpolate ramps to the size of the output axes.
This function will replace parts of the result with linear interpolation
where local monotonicity have been broken. That is, there is a local
maximum or local minimum generated between two reference points, linear
interpolation will be used instead between those two points.
@param r:list<float> The red colour curves
@param g:list<float> The green colour curves
@param b:list<float> The blue colour curves
@return :(r:list<float>, g:list<float>, b:list<float>) The input parameters extended to sizes of `o_size`,
or their original size, whatever is larger.
'''
C = lambda c : c[:] if len(c) >= o_size else ([None] * o_size)
R, G, B, linear = C(r), C(g), C(b), [None]
for ci, (small, large) in enumerate(((r, R), (g, G), (b, B))):
small_, large_ = len(small) - 1, len(large) - 1
# Only interpolate if scaling up
if large_ > small_:
n = len(small)
## Construct interpolation matrix (TODO this is not working correctly)
M = [[small[y] ** i for i in range(n)] for y in range(n)]
A = [x / small_ for x in range(n)]
## Eliminate interpolation matrix
# (XXX this can be done faster by utilising the fact that we have a Vandermonde matrix)
# Eliminiate lower left
for k in range(n - 1):
for i in range(k + 1, n):
m = M[i][k] / M[k][k]
M[i][k + 1:] = [M[i][j] - M[k][j] * m for j in range(k + 1, n)]
A[i] -= A[k] * m
# Eliminiate upper right
for k in reversed(range(n)):
A[:k] = [A[i] - A[k] * M[i][k] / M[k][k] for i in range(k)]
# Eliminiate diagonal
A = [A[k] / M[k][k] for k in range(n)]
## Construct interpolation function
f = lambda x : sum(A[i] * x ** i for i in range(n))
## Apply interpolation
large[:] = [f(x / large_) for x in range(len(large))]
## Check local monotonicity
eliminate_halos(r, g, b, R, G, B)
return (R, G, B)
def eliminate_halos(r, g, b, R, G, B): # TODO demo this
'''
Eliminate haloing effects in interpolations
@param r:list<float> The original red curve
@param g:list<float> The original green curve
@param b:list<float> The original blue curve
@param R:list<float> The scaled up red curve
@param G:list<float> The scaled up green curve
@param B:list<float> The scaled up blue curve
'''
linear = None
for ci, (small, large) in enumerate(((r, R), (g, G), (b, B))):
small_, large_ = len(small) - 1, len(large) - 1
## Check local monotonicity
for i in range(small_):
# Small curve
x1, x2, y1, y2 = i, i + 1, small[i], small[i + 1]
# Scaled up curve
X1, X2 = int(x1 * large_ / small_), int(x2 * large_ / small_)
Y1, Y2 = large[X1], large[X2]
monotone = True
if y2 == y1:
# Flat part, just make sure it is flat in the interpolation
# without doing a check before.
for x in range(X1, X2 + 1):
large[x] = y1
elif y2 > y1:
# Increasing
monotone = all(map(lambda x : large[x + 1] >= large[x], range(X1, X2))) and (Y2 > Y1)
elif y2 < y1:
# Decreasing
monotone = all(map(lambda x : large[x + 1] <= large[x], range(X1, X2))) and (Y2 < Y1)
# If the monotonicity has been broken,
if not monotone:
# replace the partition with linear interpolation.
# If linear interpolation has not yet been calculated,
if linear is None:
# then calculate it.
linear = linearly_interpolate_ramp(r, g, b)
# Extract the linear interpolation for the current colour curve,
# and replace the local partition with the linear interpolation.
large[X1 : X2 + 1] = linear[ci][X1 : X2 + 1]
def functionise(rgb):
'''
Convert a three colour curves to a function that applies those adjustments
@param rgb:(r:list<float>, g:list<float>, b:list<float>) The colour curves as [0, 1] values
@return :()→void Function to invoke to apply the curves
that the parameters [r, g and b] represents
'''
def fcurve(R_curve, G_curve, B_curve):
for curve, cur in curves(R_curve, G_curve, B_curve):
for i in range(i_size):
# Nearest neighbour
y = int(curve[i] * (len(cur) - 1) + 0.5)
# Truncation to actual neighbour
y = min(max(0, y), len(cur) - 1)
# Remapping
curve[i] = cur[y]
return lambda : fcurve(*rgb)
def store():
'''
Store the current adjustments
@return :(r:list<float>, g:list<float>, b:list<float>) The colour curves
'''
return (r_curve[:], g_curve[:], b_curve[:])
def restore(rgb):
'''
Discard any currently applied adjustments and apply stored adjustments
@param rgb:(r:list<float>, g:list<float>, b:list<float>) The colour curves to restore
'''
(r_curve[:], g_curve[:], b_curve[:]) = rgb
|