#!/usr/bin/env python3 # -*- python -*- # Test of linear interpolation. # Intended as a test of the test and # as a reference implemention of a test. # Load matplotlib.pyplot, # it can take some time so # print information about it. print('Loading matplotlib.pyplot...') import matplotlib.pyplot as plot print('Done loading matplotlib.pyplot') # Modules used for input data generation from math import * from random import * def main(): # Create a page with graphs fig = plot.figure() # Add graphs add_graph(fig, 221, [i / 15 for i in range(16)]) add_graph(fig, 222, [sin(6 * i / 15) for i in range(16)]) add_graph(fig, 223, [(i / 15) ** 0.5 for i in range(16)]) add_graph(fig, 224, [random() for i in range(16)]) # Show graphs plot.show() def add_graph(fig, graph_pos, input_values): ''' Add a graph @param fig:Figure The page to which to add the graph @param graph_pos:int Where to place the graph @param input_values:list The input values for each point ''' # Interpolate data output_values = interpolate(input_values) # Number of input points n = len(input_values) # Number of output points m = len(output_values) # Create graph graph = fig.add_subplot(graph_pos) # Plot interpolated data graph.plot([i / (m - 1) for i in range(m)], output_values, 'b-') # Plot input data graph.plot([i / (n - 1) for i in range(n)], input_values, 'ro') def interpolate(small): ''' Interpolate data @param small:list The input values for each point @return :list The values for each point in a scaled up version ''' large = [None] * len(small) ** 2 small_, large_ = len(small) - 1, len(large) - 1 for i in range(len(large)): # Scaling j = i * small_ / large_ # Floor, weight, ceiling j, w, k = int(j), j % 1, min(int(j) + 1, small_) # Interpolation large[i] = small[j] * (1 - w) + small[k] * w return large # Plot interpolation main()