#!/usr/bin/env python3

# Copyright © 2014  Mattias Andrée (maandree@member.fsf.org)
# 
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Affero General Public License for more details.
# 
# You should have received a copy of the GNU Affero General Public License
# along with this program.  If not, see <http://www.gnu.org/licenses/>.
import math
import time


def julian_day_to_epoch(t):
    return (jd - 2440587.5) * 86400.0

def epoch_to_julian_day(t):
    return t / 86400.0 + 2440587.5

def julian_day_to_julian_centuries(t):
    return (t - 2451545.0) / 36525.0

def julian_centuries_to_julian_day(t):
    return t * 36525.0 + 2451545.0

def epoch_to_julian_centuries(t):
    return julian_day_to_julian_centuries(epoch_to_julian_day(t))

def julian_centuries_to_epoch(t):
    return julian_day_to_epoch(julian_centuries_to_julian_day(t))

def epoch():
    return time.time()

def julian_day():
    return epoch_to_julian_day(epoch())

def julian_centuries():
    return epoch_to_julian_centuries(epoch())

def radians(deg):
    return deg * math.pi / 180

def degrees(rad):
    return rad * 180 / math.pi

def sun_geometric_mean_longitude(t):
    return radians((0.0003032 * t ** 2 + 36000.76983 * t + 280.46646) % 360)

def sun_geometric_mean_anomaly(t):
    return radians(-0.0001537 * t ** 2 + 35999.05029 * t + 357.52911)

def earth_orbit_eccentricity(t):
    return -0.0000001267 * t ** 2 - 0.000042037 * t + 0.016708634

def sun_equation_of_centre(t):
    a = sun_geometric_mean_anomaly(t)
    rc = math.sin(1 * a) * (-0.000014 * t ** 2 - 0.004817 * t + 1.914602)
    rc += math.sin(2 * a) * (-0.000101 * t + 0.019993)
    rc += math.sin(3 * a) * 0.000289
    return radians(rc)

def sun_real_longitude(t):
    rc = sun_geometric_mean_longitude(t)
    return rc + sun_equation_of_centre(t)

def sun_apparent_longitude(t):
    rc = degrees(sun_real_longitude(t)) - 0.00569
    rc -= 0.00478 * math.sin(radians(-1934.136 * t + 125.04))
    return radians(rc)

def mean_ecliptic_obliquity(t):
    rc = 0.001813 * t ** 3 - 0.00059 * t ** 2 - 46.815 * t + 21.448
    rc = 26 + rc / 60
    rc = 23 + rc / 60
    return radians(rc)

def corrected_mean_ecliptic_obliquity(t):
    rc = -1934.136 * t + 125.04
    rc = 0.00256 * math.cos(radians(rc))
    rc += degrees(mean_ecliptic_obliquity(t))
    return radians(rc)

def solar_declination(t):
    rc = math.sin(corrected_mean_ecliptic_obliquity(t))
    rc *= math.sin(sun_apparent_longitude(t))
    return math.asin(rc)

def equation_of_time(t):
    l = sun_geometric_mean_longitude(t)
    e = earth_orbit_eccentricity(t)
    m = sun_geometric_mean_anomaly(t)
    y = corrected_mean_ecliptic_obliquity(t)
    y = math.tan(y / 2) ** 2
    rc = y * math.sin(2 * l)
    rc += (4 * y * math.cos(2 * l) - 2) * e * math.sin(m)
    rc -= 0.5 * y ** 2 * math.sin(4 * l)
    rc -= 1.25 * e ** 2 * math.sin(2 * m)
    return 4 * degrees(rc)

def hour_angle_from_elevation(latitude, declinaton, elevation):
    if elevation == 0:
        return 0
    rc = math.cos(abs(elevation))
    rc -= math.sin(radians(latitude)) * math.sin(declinaton)
    rc /= math.cos(radians(latitude)) * math.cos(declinaton)
    rc = math.acos(rc)
    return -rc if (rc < 0) == (elevation < 0) else rc;

def elevation_from_hour_angle(latitude, declinaton, hour_angle):
    rc = math.cos(radians(latitude))
    rc *= math.cos(hour_angle) * math.cos(declinaton)
    rc += math.sin(radians(latitude)) * math.sin(declinaton)
    return math.asin(rc)

def time_of_solar_noon(t, longitude):
    t, rc = julian_centuries_to_julian_day(t), longitude
    for (k, m) in ((-360, 0), (1440, -0.5)):
        rc = julian_day_to_julian_centuries(t + m + rc / k)
        rc = 720 - 4 * longitude - equation_of_time(rc)
    return rc

def time_of_solar_elevation(t, noon, latitude, longitude, elevation):
    rc = noon
    rc, et = solar_declination(rc), equation_of_time(rc)
    rc = hour_angle_from_elevation(latitude, rc, elevation)
    rc = 720 - 4 * (longitude + degrees(rc)) - et
    
    rc = julian_day_to_julian_centuries(julian_centuries_to_julian_day(t) + rc / 1440)
    rc, et = solar_declination(rc), equation_of_time(rc)
    rc = hour_angle_from_elevation(latitude, rc, elevation)
    rc = 720 - 4 * (longitude + degrees(rc)) - et
    return rc

def solar_elevation_from_time(t, latitude, longitude):
    rc = julian_centuries_to_julian_day(t)
    rc = (rc - float(int(rc + 0.5)) - 0.5) * 1440
    rc = 720 - rc - equation_of_time(t)
    rc = radians(rc / 4 - longitude)
    return elevation_from_hour_angle(latitude, solar_declination(t), rc)

def solar_elevation(latitude, longitude, t = None):
    rc = julian_centuries() if t is None else t
    rc = solar_elevation_from_time(rc, latitude, longitude)
    return degrees(rc)

def sun(latitude, longitude, t = None, low = -6.0, high = 3.0):
    t = julian_centuries() if t is None else t
    e = solar_elevation(latitude, longitude, t)
    e = (e - low) / (high - low)
    return min(max(0, e), 1)