#!/usr/bin/env python3
# Copyright © 2014 Mattias Andrée (maandree@member.fsf.org)
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see .
# This module contains interpolation functions.
from aux import *
from curve import *
def linearly_interpolate_ramp(r, g, b):
'''
Linearly interpolate ramps to the size of the output axes
@param r:list The red colour curves
@param g:list The green colour curves
@param b:list The blue colour curves
@return :(r:list, g:list, b:list) The input parameters extended to sizes of `o_size`,
or their original size, whatever is larger.
'''
C = lambda c : c[:] if len(c) >= o_size else ([None] * o_size)
R, G, B = C(r), C(g), C(b)
for small, large in ((r, R), (g, G), (b, B)):
small_, large_ = len(small) - 1, len(large) - 1
# Only interpolate if scaling up
if large_ > small_:
for i in range(len(large)):
# Scaling
j = i * small_ / large_
# Floor, weight, ceiling
j, w, k = int(j), j % 1, min(int(j) + 1, small_)
# Interpolation
large[i] = small[j] * (1 - w) + small[k] * w
return (R, G, B)
def cubicly_interpolate_ramp(r, g, b, tension = 0):
'''
Interpolate ramps to the size of the output axes using cubic Hermite spline
@param r:list The red colour curves
@param g:list The green colour curves
@param b:list The blue colour curves
@param tension:float A [0, 1] value of the tension
@return :(r:list, g:list, b:list) The input parameters extended to sizes of `o_size`,
or their original size, whatever is larger.
'''
C = lambda c : c[:] if len(c) >= o_size else ([None] * o_size)
R, G, B = C(r), C(g), C(b)
# Basis functions
#h00 = lambda t : (1 + 2 * t) * (1 - t) ** 2
h10 = lambda t : t * (1 - t) ** 2
h01 = lambda t : t ** 2 * (3 - 2 * t)
h11 = lambda t : t ** 2 * (t - 1)
def tangent(values, index, last):
'''
Calculate the tangent at a point
@param values:list Mapping from points to values
@param index:int The point
@param last:int The last point
@return :float The tangent at the point `index`
'''
if last == 0: return 0
if index == 0: return values[1] - values[0]
if index == last: return values[last] - values[last - 1]
return (values[index + 1] - values[index - 1]) / 2
# Tension coefficent
c_ = 1 - tension
# Interpolate each curve
for small, large in ((r, R), (g, G), (b, B)):
small_, large_ = len(small) - 1, len(large) - 1
# Only interpolate if scaling up
if large_ > small_:
for i in range(len(large)):
# Scaling
j = i * small_ / large_
# Floor, weight, ceiling
j, w, k = int(j), j % 1, min(int(j) + 1, small_)
# Points
pj, pk = small[j], small[k]
# Tangents
mj, mk = c_ * tangent(small, j, small_), c_ * tangent(small, k, small_)
# Interpolation
large[i] = pj + h10(w) * mj + h01(w) * (pk - pj) + h11(w) * mk
## Check local monotonicity
eliminate_halos(r, g, b, R, G, B)
return (R, G, B)
def monotonicly_cubicly_interpolate_ramp(r, g, b, tension = 0):
'''
Interpolate ramps to the size of the output axes using
monotone cubic Hermite spline and the Fritsch–Carlson method
Does not overshoot, but regular cubic interpolation with uses
linear replacement for overshot areas is better
@param r:list The red colour curves
@param g:list The green colour curves
@param b:list The blue colour curves
@param tension:float A [0, 1] value of the tension
@return :(r:list, g:list, b:list) The input parameters extended to sizes of `o_size`,
or their original size, whatever is larger.
'''
C = lambda c : c[:] if len(c) >= o_size else ([None] * o_size)
R, G, B = C(r), C(g), C(b)
# Basis functions
#h00 = lambda t : (1 + 2 * t) * (1 - t) ** 2
h10 = lambda t : t * (1 - t) ** 2
h01 = lambda t : t ** 2 * (3 - 2 * t)
h11 = lambda t : t ** 2 * (t - 1)
def tangent(values, index, last):
'''
Calculate the tangent at a point
@param values:list Mapping from points to values
@param index:int The point
@param last:int The last point
@return :float The tangent at the point `index`
'''
if last == 0: return 0
if index == 0: return values[1] - values[0]
if index == last: return values[last] - values[last - 1]
return (values[index + 1] - values[index - 1]) / 2
# Tension coefficent
c_ = 1 - tension
## Interpolant selection
# Compute the slopes of the secant
# lines between successive points
ds = [small[i + 1] - small[i] for i in range(small_)]
# Initialize the tangents at every
# data point as the average of the secants
ms = [ds[0]] + [(ds[i - 1] + ds[i]) / 2 for i in range(1, small_)] + [ds[small_ - 1]]
βlast = 0
for i in range(small_):
if ds[i] == 0:
# Two successive values are equal, ms[i],
# must be zero to preserve monotonicity,
# no idea to do further work on them.
ms[i], βlast = 0, -1
continue
# Look for local extremums
α, β = ms[i] / ds[i], ms[i + 1] / ds[i]
if (α < 0) or (βlast < 0):
# Local extremum found,
# ensure piecewise monotonicity
ms[i], β = 0, -1
elif α ** 2 + β ** 2 > 9:
# Otherwise, prevent overshoot and ensure
# monotonicity by restricting the (α, β)
# vector to a circle of radius 3.
τ = 3 / (α ** 2 + β ** 2) ** 0.5
ms[i], ms[i + 1] = τ * α * ds[i], τ * β * ds[i]
βlast = β
## Interpolate each curve
for small, large in ((r, R), (g, G), (b, B)):
small_, large_ = len(small) - 1, len(large) - 1
# Only interpolate if scaling up
if large_ > small_:
for i in range(len(large)):
# Scaling
j = i * small_ / large_
# Floor, weight, ceiling
j, w, k = int(j), j % 1, min(int(j) + 1, small_)
# Points
pj, pk = small[j], small[k]
# Tangents
mj, mk = c_ * ms[j], c_ * ms[k]
# Interpolation
large[i] = pj + h10(w) * mj + h01(w) * (pk - pj) + h11(w) * mk
return (R, G, B)
def polynomially_interpolate_ramp(r, g, b): # TODO Speedup, demo and document this
'''
Polynomially interpolate ramps to the size of the output axes.
This function will replace parts of the result with linear interpolation
where local monotonicity have been broken. That is, there is a local
maximum or local minimum generated between two reference points, linear
interpolation will be used instead between those two points.
@param r:list The red colour curves
@param g:list The green colour curves
@param b:list The blue colour curves
@return :(r:list, g:list, b:list) The input parameters extended to sizes of `o_size`,
or their original size, whatever is larger.
'''
C = lambda c : c[:] if len(c) >= o_size else ([None] * o_size)
R, G, B, linear = C(r), C(g), C(b), [None]
for ci, (small, large) in enumerate(((r, R), (g, G), (b, B))):
small_, large_ = len(small) - 1, len(large) - 1
# Only interpolate if scaling up
if large_ > small_:
n = len(small)
## Construct interpolation matrix (TODO this is not working correctly)
M = [[small[y] ** i for i in range(n)] for y in range(n)]
A = [x / small_ for x in range(n)]
## Eliminate interpolation matrix
# (XXX this can be done faster by utilising the fact that we have a Vandermonde matrix)
# Eliminiate lower left
for k in range(n - 1):
for i in range(k + 1, n):
m = M[i][k] / M[k][k]
M[i][k + 1:] = [M[i][j] - M[k][j] * m for j in range(k + 1, n)]
A[i] -= A[k] * m
# Eliminiate upper right
for k in reversed(range(n)):
A[:k] = [A[i] - A[k] * M[i][k] / M[k][k] for i in range(k)]
# Eliminiate diagonal
A = [A[k] / M[k][k] for k in range(n)]
## Construct interpolation function
f = lambda x : sum(A[i] * x ** i for i in range(n))
## Apply interpolation
large[:] = [f(x / large_) for x in range(len(large))]
## Check local monotonicity
eliminate_halos(r, g, b, R, G, B)
return (R, G, B)
def eliminate_halos(r, g, b, R, G, B):
'''
Eliminate haloing effects in interpolations
@param r:list The original red curve
@param g:list The original green curve
@param b:list The original blue curve
@param R:list The scaled up red curve
@param G:list The scaled up green curve
@param B:list The scaled up blue curve
'''
linear = None
for ci, (small, large) in enumerate(((r, R), (g, G), (b, B))):
small_, large_ = len(small) - 1, len(large) - 1
## Check local monotonicity
for i in range(small_):
# Small curve
x1, x2, y1, y2 = i, i + 1, small[i], small[i + 1]
# Scaled up curve
X1, X2 = int(x1 * large_ / small_), int(x2 * large_ / small_)
Y1, Y2 = large[X1], large[X2]
monotone = True
if y2 == y1:
# Flat part, just make sure it is flat in the interpolation
# without doing a check before.
for x in range(X1, X2 + 1):
large[x] = y1
elif y2 > y1:
# Increasing
monotone = all(map(lambda x : large[x + 1] >= large[x], range(X1, X2))) and (Y2 > Y1)
elif y2 < y1:
# Decreasing
monotone = all(map(lambda x : large[x + 1] <= large[x], range(X1, X2))) and (Y2 < Y1)
# If the monotonicity has been broken,
if not monotone:
# replace the partition with linear interpolation.
# If linear interpolation has not yet been calculated,
if linear is None:
# then calculate it.
linear = linearly_interpolate_ramp(r, g, b)
# Extract the linear interpolation for the current colour curve,
# and replace the local partition with the linear interpolation.
large[X1 : X2 + 1] = linear[ci][X1 : X2 + 1]
def interpolate_function(function, interpolator):
'''
Interpolate a function that applies adjustments from a lookup table
@param function:()→void The function that applies the adjustments
@param interpolator:(list{3})?→[list{3}] Function that interpolates lookup tables
@return :()→void `function` interpolated
'''
# Do not interpolation if none is selected
if interpolator is None:
return function
# Store the current adjustments, we
# will need to apply our own temporary
# adjustments
stored = store()
# Clean any adjustments,
start_over()
# and apply those we should interpolate.
function()
# Interpolate the adjustments we just
# made and make a function out of it
rc = functionise(interpolator(*store()))
# Restore the adjustments to those
# that were applied when we started
restore(stored)
return rc