#!/usr/bin/env python3 # Copyright © 2014 Mattias Andrée (maandree@member.fsf.org) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import math from colour import * # /usr/share/blueshift DATADIR = 'res' # Mapping input and output maximum values + 1 i_size = 2 ** 8 o_size = 2 ** 16 # Red, green and blue curves r_curve = [i / (i_size - 1) for i in range(i_size)] g_curve = [i / (i_size - 1) for i in range(i_size)] b_curve = [i / (i_size - 1) for i in range(i_size)] clip_result = True ''' Set to `False` if you want to allow value overflow rather than clipping, doing so can create visual artifacts ''' def curves(r, g, b): ''' Generate a tuple of curve–parameter pairs @param r The red parameter @param g The green parameter @param b The blue parameter @return `((r_curve, r), (g_curve, g), (b_curve, b))` ''' return ((r_curve, r), (g_curve, g), (b_curve, b)) def series_d(temperature): ''' Calculate the colour for a blackbody temperature Using `lambda t : divide_by_maximum(series_d(t))` as the algorithm is better than just `series_d` @param temperature:float The blackbody temperature in kelvins, must be inside [4000, 7000] @return :(float, float, float) The red, green and blue components of the white point ''' x = 0 ks = ((0.244063, 0), (0.09911, 1), (2.9678, 2), (-4.6070, 3)) if temperature > 7000: ks = ((0.237040, 0), (0.24748, 1), (1.9018, 2), (-2.0064, 3)) for (k, d) in ks: x += k * 10 ** (d * 3) / temperature ** d y = 2.870 * x - 3.000 * x ** 2 - 0.275 return ciexyy_to_srgb(x, y, 1.0) def simple_whitepoint(temperature): ''' Calculate the colour for a blackbody temperature using a simple, but inaccurate, algorithm @param temperature:float The blackbody temperature in kelvins, not guaranteed for values outside [1000, 40000] @return :(float, float, float) The red, green and blue components of the white point ''' r, g, b = 1, 1, 1 temp = temperature / 100 if temp > 66: temp -= 60 r = 1.292936186 * temp ** 0.1332047592 g = 1.129890861 * temp ** -0.0755148492 else: g = 0.390081579 * math.log(temp) - 0.631841444 if temp <= 19: b = 0 elif temp < 66: b = 0.543206789 * math.log(temp - 10) - 1.196254089 return (r, g, b) cmf_2deg_cache = None def cmf_2deg(temperature): ''' Calculate the colour for a blackbody temperature using raw CIE 1931 2 degree CMF data with interpolation Using `lambda t : divide_by_maximum(cmf_2deg(t))` as the algorithm is better than just `cmf_2deg` @param temperature:float The blackbody temperature in kelvins, clipped to [1000, 40000] @return :(float, float, float) The red, green and blue components of the white point ''' global cmf_2deg_cache if cmf_2deg_cache is None: with open(DATADIR + '/2deg', 'rb') as file: cmf_2deg_cache = file.read() cmf_2deg_cache = cmf_2deg_cache.decode('utf-8', 'error').split('\n') cmf_2deg_cache = filter(lambda x : not x == '', cmf_2deg_cache) cmf_2deg_cache = [[float(x) for x in x_y.split(' ')] for x_y in cmf_2deg_cache] temp = min(max(1000, temperature), 40000) x, y = 0, 0 if (temp % 100) == 0: (x, y) = cmf_2deg_cache[int((temp - 1000) // 100)] else: temp -= 1000 (x1, y1) = cmf_2deg_cache[int(temp // 100)] (x2, y2) = cmf_2deg_cache[int(temp // 100 + 1)] temp = (temp % 100) / 100 x = x1 * temp + x2 * (1 - temp) y = y1 * temp + y2 * (1 - temp) return ciexyy_to_srgb(x, y, 1.0) cmf_10deg_cache = None def cmf_10deg(temperature): ''' Calculate the colour for a blackbody temperature using raw CIE 1964 10 degree CMF data with interpolation Using `lambda t : divide_by_maximum(cmf_10deg(t))` as the algorithm is better than just `cmf_10deg` @param temperature:float The blackbody temperature in kelvins, clipped to [1000, 40000] @return :(float, float, float) The red, green and blue components of the white point ''' global cmf_10deg_cache if cmf_10deg_cache is None: with open(DATADIR + '/10deg', 'rb') as file: cmf_10deg_cache = file.read() cmf_10deg_cache = cmf_10deg_cache.decode('utf-8', 'error').split('\n') cmf_10deg_cache = filter(lambda x : not x == '', cmf_10deg_cache) cmf_10deg_cache = [[float(x) for x in x_y.split(' ')] for x_y in cmf_10deg_cache] temp = min(max(1000, temperature), 40000) x, y = 0, 0 if (temp % 100) == 0: (x, y) = cmf_10deg_cache[int((temp - 1000) // 100)] else: temp -= 1000 (x1, y1) = cmf_10deg_cache[int(temp // 100)] (x2, y2) = cmf_10deg_cache[int(temp // 100 + 1)] temp = (temp % 100) / 100 x = x1 * temp + x2 * (1 - temp) y = y1 * temp + y2 * (1 - temp) return ciexyy_to_srgb(x, y, 1) redshift_cache, redshift_old_cache = None, None def redshift(temperature, old_version = False, linear_interpolation = False): ''' Calculate the colour for a blackbody temperature using same data as in the program redshift @param temperature:float The blackbody temperature in kelvins, clipped to [1000, 25100] (100 more kelvins than in redshift) @param old_version:bool Whether to the method used in redshift<=1.8, in which case `temperature` is clipped to [1000, 10000] (1 more kelvin than in redshift) @param linear_interpolation:bool Whether to interpolate one linear RGB instead of sRGB @return :(float, float, float) The red, green and blue components of the white point ''' global redshift_cache, redshift_old_cache cache = None if not old_version: if redshift_cache is None: with open(DATADIR + '/redshift', 'rb') as file: redshift_cache = file.read() redshift_cache = redshift_cache.decode('utf-8', 'error').split('\n') redshift_cache = filter(lambda x : not x == '', redshift_cache) redshift_cache = [[float(x) for x in r_g_b.split(' ')] for r_g_b in redshift_cache] cache = redshift_cache else: if redshift_old_cache is None: with open(DATADIR + '/redshift_old', 'rb') as file: redshift_old_cache = file.read() redshift_old_cache = redshift_old_cache.decode('utf-8', 'error').split('\n') redshift_old_cache = filter(lambda x : not x == '', redshift_old_cache) redshift_old_cache = [[float(x) for x in r_g_b.split(' ')] for r_g_b in redshift_old_cache] cache = redshift_old_cache temp = min(max(1000, temperature), 10000 if old_version else 25100) r, g, b = 1, 1, 1 if (temp % 100) == 0: (r, g, b) = cache[int((temp - 1000) // 100)] else: temp -= 1000 (r1, g1, b1) = cache[int(temp // 100)] (r2, g2, b2) = cache[int(temp // 100 + 1)] temp = (temp % 100) / 100 if linear_interpolation: (r, g, b) = standard_to_linear(r, g, b) r = r1 * temp + r2 * (1 - temp) g = g1 * temp + g2 * (1 - temp) b = b1 * temp + b2 * (1 - temp) if linear_interpolation: (r, g, b) = linear_to_standard(r, g, b) return (r, g, b) def temperature(temperature, algorithm): ''' Change colour temperature according to the CIE illuminant series D @param temperature:float The blackbody temperature in kelvins @param algorithm:(float)→(float, float, float) Algorithm for calculating a white point, for example `series_d` or `simple_whitepoint` ''' if temperature == 6500: return (r, g, b) = algorithm(temperature) rgb_brightness(r, g, b) def divide_by_maximum(rgb): ''' Divide all colour components by the value of the most prominent colour component @param rgb:[float, float, float] The three colour components @return :[float, float, float] The three colour components divided by the maximum ''' m = max([abs(x) for x in rgb]) if m != 0: return [x / m for x in rgb] return rgb def clip_whitepoint(rgb): ''' Clip all colour components to fit inside [0, 1] @param rgb:[float, float, float] The three colour components @return :[float, float, float] The three colour components clipped ''' return [min(max(0, x), 1) for x in rgb] def rgb_contrast(r, g = None, b = None): ''' Apply contrast correction on the colour curves using sRGB @param r:float The contrast parameter for the red curve @param g:float? The contrast parameter for the green curve, defaults to `r` if `None` @param b:float? The contrast parameter for the blue curve, defaults to `r` if `None` ''' if g is None: g = r if b is None: b = r for (curve, level) in curves(r, g, b): if not level == 1.0: for i in range(i_size): curve[i] = (curve[i] - 0.5) * level + 0.5 def cie_contrast(level): ''' Apply contrast correction on the colour curves using CIE xyY @param level:float The brightness parameter ''' if not level == 1.0: for i in range(i_size): (x, y, Y) = srgb_to_ciexyy(r_curve[i], g_curve[i], b_curve[i]) (r_curve[i], g_curve[i], b_curve[i]) = ciexyy_to_srgb(x, y, (Y - 0.5) * level + 0.5) def rgb_brightness(r, g = None, b = None): ''' Apply brightness correction on the colour curves using sRGB @param r:float The brightness parameter for the red curve @param g:float? The brightness parameter for the green curve, defaults to `r` if `None` @param b:float? The brightness parameter for the blue curve, defaults to `r` if `None` ''' if g is None: g = r if b is None: b = r for (curve, level) in curves(r, g, b): if not level == 1.0: for i in range(i_size): curve[i] *= level def cie_brightness(level): ''' Apply brightness correction on the colour curves using CIE xyY @param level:float The brightness parameter ''' if not level == 1.0: for i in range(i_size): (x, y, Y) = srgb_to_ciexyy(r_curve[i], g_curve[i], b_curve[i]) (r_curve[i], g_curve[i], b_curve[i]) = ciexyy_to_srgb(x, y, Y * level) def linearise(): ''' Convert the curves from formatted in standard RGB to linear RGB ''' for i in range(i_size): r, g, b = r_curve[i], g_curve[i], b_curve[i] (r, g, b) = standard_to_linear(r, g, b) r_curve[i], g_curve[i], b_curve[i] = r, g, b def standardise(): ''' Convert the curves from formatted in linear RGB to standard RGB ''' for i in range(i_size): r, g, b = r_curve[i], g_curve[i], b_curve[i] (r, g, b) = linear_to_standard(r, g, b) r_curve[i], g_curve[i], b_curve[i] = r, g, b def gamma(r, g = None, b = None): ''' Apply gamma correction on the colour curves @param r:float The gamma parameter for the red curve @param g:float? The gamma parameter for the green curve, defaults to `r` if `None` @param b:float? The gamma parameter for the blue curve, defaults to `r` if `None` ''' if g is None: g = r if b is None: b = r for (curve, level) in curves(r, g, b): if not level == 1.0: for i in range(i_size): curve[i] **= 1 / level def negative(r = True, g = None, b = None): ''' Invert the colour curves (negative image) @param r:bool Whether to invert the red curve @param g:bool? Whether to invert the green curve, defaults to `r` if `None` @param b:bool? Whether to invert the blue curve, defaults to `r` if `None` ''' if g is None: g = r if b is None: b = r for (curve, setting) in curves(r, g, b): if setting: for i in range(i_size): curve[i] = 1 - curve[i] def sigmoid(r, g, b): ''' Apply S-curve correction on the colour curves @param r:float? The sigmoid parameter for the red curve @param g:float? The sigmoid parameter for the green curve @param b:float? The sigmoid parameter for the blue curve ''' for (curve, level) in curves(r, g, b): if level is not None: for i in range(i_size): try: curve[i] = 0.5 - math.log(1 / curve[i] - 1) / level except: curve[i] = 0; def manipulate(r, g = None, b = None): ''' Manipulate the colour curves using a lambda function @param r:(float)→float Lambda function to manipulate the red colour curve @param g:(float)?→float Lambda function to manipulate the green colour curve, defaults to `r` if `None` @param b:(float)?→float Lambda function to manipulate the blue colour curve, defaults to `r` if `None` The lambda functions thats a colour value and maps it to a new colour value. For example, if the red value 0.5 is already mapped to 0.25, then if the function maps 0.25 to 0.5, the red value 0.5 will revert back to being mapped to 0.5. ''' if g is None: g = r if b is None: b = r for (curve, f) in curves(r, g, b): for i in range(i_size): curve[i] = f(curve[i]) def start_over(): ''' Reverts all colours curves to identity mappings. This intended for multi-monitor setups with different curves on each monitor. If you have a multi-monitor setups without different curves then you have not calibrated the monitors or you have awesome monitors that support hardware gamma correction. ''' for i in range(i_size): v = i / (i_size - 1) r_curve[i] = v g_curve[i] = v b_curve[i] = v def clip(): ''' Clip all values below the actual minimum and above actual maximums ''' for curve in (r_curve, g_curve, b_curve): for i in range(i_size): curve[i] = min(max(0.0, curve[i]), 1.0)