# -*- python -*- # This example uses a text based configuration file to make # it easier for non-programmers to use Blueshift. It is however # rather limited, the lisp-esque example is a bit more complex # but do much more. It will # read a file with the same pathname # just with ‘.conf’ # appended (‘textconf.conf’ in this case.) # However, if the filename of this file ends with with ‘rc’, # that part will be removed, for example, if you rename this # script to ‘~/.blueshiftrc’ it will read ‘~/.blueshift.conf’ # rather than ‘~/.blueshiftrc.conf’. # Copyright © 2014 Mattias Andrée (maandree@member.fsf.org) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . import sys import time import subprocess # Get the name of .conf file conf = '%s.conf' % (config_file[:-2] if config_file.endswith('rc') else config_file) # Read .conf file with open(conf, 'r') as file: conf = file.read() # Parse .conf file sections = {'blueshift' : []} section = [] sections['blueshift'].append(section) for line in conf.split('\n'): line = line.strip() if line.startswith('[') and line.endswith(']'): section_name = line[1 : -1].strip().lower() if section_name not in sections: sections[section_name] = [] section = [] sections[section_name].append(section) elif line.startswith(';') or line.startswith('#'): continue elif ('=' in line) or (':' in line): eq = len(line) if '=' not in line else line.find('=') cl = len(line) if ':' not in line else line.find(':') eq = min(eq, cl) section.append((line[:eq].strip().lower(), line[eq + 1:].strip())) elif len(line.strip()) > 0: sys.stderr.buffer.write(('Malformated line: %s\n' % line).encode('utf-8')) sys.stderr.buffer.flush() # Default values location = None adjustment_method_x = ['randr'] adjustment_method_tty = ['drm'] points = ['solar', '3', '-6'] # List of adjustments and temporary monitor information adjustments = [] monitors = [] crtc = None screen = None def parse_value(value): ''' Parse a setting value @param value:str The value to parse @return :(list, bool, bool, bool) The words in the value string, with commands spawned, and with 'linear', 'cie' and 'default' filtered out, and their existance is put as booleans ''' def spawn(cmd): ''' Spawn an external process and read its output, but only the first line @param cmd:str The command to spawn @return :str? The first line of the command's output, `None` on failure ''' proc = subprocess.Popen(['sh', '-c', cmd], stdout = subprocess.PIPE, stderr = sys.stderr) output = proc.communicate()[0].split('\n')[0] if (proc.returncode == 0) and (len(output) > 0): return output return None words, buf, cmd = [], '', None for c in value: if cmd is not None: if cmd == '': if c == '(': cmd += '(' else: cmd = None buf += '$' else: cmd += c if c == ')': cmd = cmd[1 : -1] cmd = spawn(cmd) if cmd is not None: buf = cmd cmd = None elif c == ' ': if not buf == '': words.append(buf) buf = '' elif c == '$': cmd = '' else: buf += c if not buf == '': words.append(buf) return ([w for w in words if w not in ['linear', 'cie', 'default']], 'linear' in words, 'cie' in words, 'default' in words) # Evaluate .conf file def make_f(f, value, default): ''' Make an adjustment function @param f:(*¿V??)→void The function that makes the adjustment @param value:list<¿V??> The values for each time point @param default:list<¿V??> The default value ''' ff = None value_ = [] for val in value: value_ += val if any(map(lambda v : v is None, value_ + default)): def ff(t, a): val0 = value[(int(t) + 0) % len(value)] val1 = value[(int(t) + 1) % len(value)] t %= 1 val = zip(val0, val1, default) def interpol(v0, v1, d): if (v0 is None) or (v1 is None) or (d is None): if ( d is None) and a == 0: return None if (v0 is None) and t == 0: return None if (v1 is None) and t == 1: return None v0 = v0 * (1 - t) if v0 is not None else 0 v1 = v1 * t if v1 is not None else 0 return v0 + v1 val = [interpol(v0, v1, d) for v0, v1, d in val] f(*val) else: def ff(t, a): val0 = value[(int(t) + 0) % len(value)] val1 = value[(int(t) + 1) % len(value)] t %= 1 val = zip(val0, val1, default) val = [(v0 * (1 - t) + v1 * t) * a + (1 - a) * d for v0, v1, d in val] f(*val) return ff def float3(value): ''' Parse a string representation of a float trio @param value:str The float trio as a string @return :[float?, float?, float?] The float trio as a float list ''' value = [None if v == 'none' else float(v) for v in value.split(':')] if len(value) < 3: value *= 3 return value[:3] def float6(value): ''' Parse a string representation of a float pair-trio @param value:str The float pair-trio as a string @return :[float?]*6 The float pair-trio as a float list ''' (part1, part2) = [[float(v) for v in val.split(':')] for val in value.split('..')] if len(part1) < 3: part1 *= 3 if len(part2) < 3: part2 *= 3 part1 = part1[:3] part2 = part2[:3] value = [] for p, q in zip(part1, part2): value.append(p) value.append(q) return value def add_adjustments(adjsections, adjustments): ''' Add adjustions from a section to a list @param adjsections:list> The sections @param adjustments:list<(float, float)→void> The list to fill with adjustments ''' global location, points, adjustment_method_x, adjustment_method_tty, crtc, screen for section in adjsections: for (setting, value) in section: (value, linear, cie, default) = parse_value(value) new_adjustment = None if linear: adjustments.append(lambda _t, _a: linearise()) if setting == 'location': location = value elif setting == 'points': points = value elif setting == 'adjustment-method-x': adjustment_method_x = value elif setting == 'adjustment-method-tty': adjustment_method_tty = value elif setting == 'crtc': crtc = value elif setting == 'screen': screen = value elif setting == 'card': screen = value elif setting == 'temperature': f = lambda x : temperature(x, lambda t : divide_by_maximum(cmf_10deg(t))) new_adjustment = make_f(f, [[float(v)] for v in value], [6500]) elif setting == 'contrast': f = cie_contrast if cie else rgb_contrast new_adjustment = make_f(f, [float3(v) for v in value], 3 * [1]) elif setting == 'brightness': f = cie_brightness if cie else rgb_brightness new_adjustment = make_f(f, [float3(v) for v in value], 3 * [1]) elif setting == 'gamma': def f(*levels): clip() gamma(*levels) new_adjustment = make_f(f, [float3(v) for v in value], 3 * [1]) elif setting == 'negative': def f(*values): negative(*[not v == 0 for v in values]) new_adjustment = make_f(f, [float3(v) for v in value], 3 * [0]) elif setting == 'invert': def f(*values): (cie_invert if cie else rgb_invert)(*[not v == 0 for v in values]) new_adjustment = make_f(f, [float3(v) for v in value], 3 * [0]) elif setting == 'sigmoid': new_adjustment = make_f(sigmoid, [float3(v) for v in value], 3 * [None]) elif setting == 'limits': f = cie_limits if cie else rgb_limits new_adjustment = make_f(f, [float6(v) for v in value], 3 * [0, 1]) elif setting == 'icc': def noop(): pass profiles = [noop if val == 'none' else load_load(val) for val in value] new_adjustment = make_icc_interpolation(profiles) elif setting == 'monitor': add_adjustments(sections[' '.join(['monitor'] + value)], adjustments) else: sys.stderr.buffer.write(('Setting not recognised: %s\n' % setting).encode('utf-8')) sys.stderr.buffer.flush() if new_adjustment is not None: if default: new_adjustment_ = new_adjustment def f(t, a): new_adjustment_(t, 1) new_adjustment = f adjustments.append(new_adjustment) if linear: adjustments.append(lambda _t, _a: standardise()) add_adjustments(sections['blueshift'], adjustments) adjustment_method = adjustment_method_tty if ttymode else adjustment_method_x adjustment_method = adjustment_method[0] list_method = 'randr' if adjustment_method == 'vidmode' else adjustment_method screen_list = None for section in sections[adjustment_method]: output_adjustments = [] crtc, screen = None, None add_adjustments([section], output_adjustments) if (screen_list is None) and ((crtc is None) or (screen is None)): screen_list = list_screens(list_method) if screen is None: screen = list(range(len(screen_list))) else: screen = [int(s) for s in screen] crtcs = {} for s in screen: if crtc is not None: crtcs[s] = [int(c) for c in crtc] else: crtcs[s] = list(range(screen_list[s].crtc_count)) monitors.append((crtcs, screen, output_adjustments)) # Get gamma adjustment/reader functions get_method = {'randr' : randr_get, 'vidmode' : vidmode_get, 'drm' : drm_get} set_method = {'randr' : randr, 'vidmode' : vidmode, 'drm' : drm } get_method = get_method[adjustment_method] set_method = set_method[adjustment_method] # Save gamma ramps saved = {} for crtcs, screens, _ in monitors: for screen in screens: if screen not in saved: saved[screen] = {} saved_ = saved[screen] for crtc in crtcs[screen]: saved_[crtc] = get_method(crtc, screen) # Evaluate location latitude, longitude = None, None if 'solar' in points: if (location is None) or (len(location) == 0): sys.stderr.buffer.write(('Location missing\n').encode('utf-8')) sys.stderr.buffer.flush() sys.exit(1) try: if not len(location) == 2: raise Exception() location = [float(c) for c in location] except: sys.stderr.buffer.write(('Malformation location\n').encode('utf-8')) sys.stderr.buffer.flush() sys.exit(1) if not ((-90 <= location[0] <= 90) and (-180 <= location[0] <= 180)): sys.stderr.buffer.write(('Invalid location\n').encode('utf-8')) sys.stderr.buffer.flush() sys.exit(1) (latitude, longitude) = location # Evaluate point if ('solar' not in points) and ('time' not in points): sys.stderr.buffer.write(('Invalid points settings\n').encode('utf-8')) sys.stderr.buffer.flush() sys.exit(1) reduce_points = 'reduce' in points solar_points = 'solar' in points def t(point): point = [float(p) for p in point.split(':')] while len(point) > 3: point.append(0) v = sum([v * 60 ** (2 - i) for i, v in enumerate(point)]) return v % 24 points = [float(p) if solar_points else t(p) for p in points if p not in ['solar', 'time', 'reduce']] points = list(enumerate(points)) if reduce_points: n = len(points) - 1 points = [(r / n, v) for r, v in points] get_timepoint = None points.sort(key = lambda x : x[0]) if not solar_points: one_day = 24 * 60 * 60 points.append((points[0][0], points[0][1] + one_day)) points = [(points[-2][0], points[-2][1] - one_day)] + points def get_timepoint(): v = time.time() % one_day for i in range(len(points) - 1): a, b = points[i][1], points[i + 1][1] if a <= v <= b: a_, b_ = points[i][0], points[i + 1][0] v = (v - a) / (b - a) if (a_ + 1 == b_) or (b_ == 0): return v + points[i][0] else: return points[i][1] - v return 1 # should never happen if solar_points: def get_timepoint(): v = solar_elevation(latitude, longitude) for i in range(len(points) - 1): a, b = points[i][1], points[i + 1][1] if a <= v <= b: a_, b_ = points[i][0], points[i + 1][0] v = (v - a) / (b - a) if (a_ + 1 == b_) or (b_ == 0): return v + points[i][0] else: return points[i][1] - v if v < points[0][1]: return points[0][0] return points[-1][0] wait_period = 5 ''' :float The number of seconds to wait before invoking `periodically` again ''' def periodically(year, month, day, hour, minute, second, weekday, fade): ''' :(int, int, int, int, int, int, int, float?)?→void Place holder for periodically invoked function Invoked periodically If you want to control at what to invoke this function next time you can set the value of the global variable `wait_period` to the number of seconds to wait before invoking this function again. The value does not need to be an integer. @param year:int The year @param month:int The month, 1 = January, 12 = December @param day:int The day, minimum value is 1, probable maximum value is 31 (*) @param hour:int The hour, minimum value is 0, maximum value is 23 @param minute:int The minute, minimum value is 0, maximum value is 59 @param second:int The second, minimum value is 0, probable maximum value is 60 (**) @param weekday:int The weekday, 1 = Monday, 7 = Sunday @param fade:float? Blueshift can use this function to fade into a state when it start or exits. `fade` can either be negative, zero or positive or `None`, but the magnitude of value cannot exceed 1. When Blueshift starts, this function will be invoked multiple with the time parameters of the time it is invoked and each time `fade` will increase towards 1, starting at 0, when the value is 1, the settings should be applied to 100 %. After this this function will be invoked once again with `fade` being `None`. When Blueshift exits the same behaviour is used except, `fade` decrease towards -1 but start slightly below 0, when -1 is reached all settings should be normal. Then Blueshift will NOT invoke this function with `fade` being `None`, instead it will by itself revert all settings and quit. (*) Can be exceeded if the calendar system is changed, like in 1712-(02)Feb-30 (**) See https://en.wikipedia.org/wiki/Leap_second ''' start_over() alpha = 1 if fade is None else abs(fade) timepoint = get_timepoint() for adjustment in adjustments: adjustment(timepoint, alpha) r, g, b = r_curve[:], g_curve[:], b_curve[:] for crtcs, screens, output_adjustments in monitors: r_curve[:], g_curve[:], b_curve[:] = r, g, b for adjustment in output_adjustments: adjustment(timepoint, alpha) for screen in screens: set_method(*(crtcs[screen]), screen = screen) def reset(): ''' Invoked to reset the displays ''' for crtcs, screens, _ in monitors: for screen in screens: saved_ = saved[screen] for crtc in crtcs[screen]: start_over() saved_[crtc]() set_method(crtc, screen = screen)