# -*- python -*- # This example graciously fades out the screen on start and # in on exit. It is a nice alternative to turning off the # monitor, just press Control+C when you wake up. # The (zero-based) index of the monitors (CRTC:s) to apply # settings to. An empty list means that all monitors are used, # but all monitors will have the same settings. monitors = [] # These settings are lists. This is to allow you to use different # settings on different monitors. For example, `gamma_red = [1]`, # this means that the red gamma is 1 on all monitors. But if we # change this to `gamma_red = [1.0, 1.1]`, the first monitor will # have the red gamma set to 1,0 and the second monitor will have # the red gamma set to 1,1. If you have more monitors than used # in the settings modulo division will be used. For instance, if # you have four monitors, the third monitor will have the same # settings as the first monitor, and the fourth monitor will have # the same settings as the second monitor. # Gamma correction for the red, green and blue components, respectively. gamma_red, gamma_green, gamma_blue = [1], [1], [1] # The red, green and blue brightness, respectively. redness, greenness, blueness = [0.25], [0], [0] # Set fade time at start to 15 seconds. fadein_time = 15 # Do 10 changes per second at start. fadein_steps = fadein_time * 10 # Set fade time at exit to 30 seconds. fadeout_time = 30 # Do 10 changes per second at end. fadeout_steps = fadeout_time * 10 # During sleep mode the changes will occur so we update one every hour. wait_period = 60 * 60 def periodically(year, month, day, hour, minute, second, weekday, fade): ''' :(int, int, int, int, int, int, int, float?)?→void Place holder for periodically invoked function Invoked periodically If you want to control at what to invoke this function next time you can set the value of the global variable `wait_period` to the number of seconds to wait before invoking this function again. The value does not need to be an integer. @param year:int The year @param month:int The month, 1 = January, 12 = December @param day:int The day, minimum value is 1, probable maximum value is 31 (*) @param hour:int The hour, minimum value is 0, maximum value is 23 @param minute:int The minute, minimum value is 0, maximum value is 59 @param second:int The second, minimum value is 0, probable maximum value is 60 (**) @param weekday:int The weekday, 1 = Monday, 7 = Sunday @param fade:float? Blueshift can use this function to fade into a state when it start or exits. `fade` can either be negative, zero or positive or `None`, but the magnitude of value cannot exceed 1. When Blueshift starts, this function will be invoked multiple with the time parameters of the time it is invoked and each time `fade` will increase towards 1, starting at 0, when the value is 1, the settings should be applied to 100 %. After this this function will be invoked once again with `fade` being `None`. When Blueshift exits the same behaviour is used except, `fade` decrease towards -1 but start slightly below 0, when -1 is reached all settings should be normal. Then Blueshift will NOT invoke this function with `fade` being `None`, instead it will by itself revert all settings and quit. (*) Can be exceeded if the calendar system is changed, like in 1712-(02)Feb-30 (**) See https://en.wikipedia.org/wiki/Leap_second ''' purity = 0 if fade is None else 1 - abs(fade) for m in [0] if len(monitors) == 0 else monitors: # Remove settings from last run. start_over() # Fade out the blue colours component, then the green # colours component and lastly the blue colours component. r = min(max(0, purity * 3 - 0), 1) g = min(max(0, purity * 3 - 1), 1) b = min(max(0, purity * 3 - 2), 1) r = redness [m % len(redness)] * (1 - r) + r g = greenness[m % len(greenness)] * (1 - g) + g b = blueness [m % len(blueness)] * (1 - b) + b rgb_brightness(r, g, b) # Flush settings to monitor. r = gamma_red [m % len(gamma_red)] g = gamma_green[m % len(gamma_green)] b = gamma_blue [m % len(gamma_blue)] gamma(r, g, b) # Flush settings to monitor. if len(monitors) == 0: randr() else: randr(m) def reset(): ''' Invoked to reset the displays ''' for m in [0] if len(monitors) == 0 else monitors: # Remove settings from last run. start_over() # Apply gamma correction to monitor. r = gamma_red [m % len(gamma_red)] g = gamma_green[m % len(gamma_green)] b = gamma_blue [m % len(gamma_blue)] gamma(r, g, b) # Flush settings to monitor. if len(monitors) == 0: randr() else: randr(m)