# -*- python -*- # This example reads a lisp-esque syntax configuration # file to make it easier for non-programmers to use # Blueshift. It will read a file with the same pathname # just with ‘.conf’ appended (‘lisp-esque.conf’ in this # case.) However, if the filename of this file ends with # with ‘rc’, that part will be removed, for example, if # you rename this script to ‘~/.blueshiftrc’ it will read # ‘~/.blueshift.conf’ rather than ‘~/.blueshiftrc.conf’. # Copyright © 2014, 2015, 2016, 2017 Mattias Andrée (m@maandree.se) # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see . import sys # Get the name of .conf file conf = '%s.conf' % (config_file[:-2] if config_file.endswith('rc') else config_file) # Read .conf file with open(conf, 'r') as file: conf = file.read() def abort(text, returncode = 1): ''' Abort the program @param text:str Error message @return returncode:int The programs return code ''' printerr('\033[01;31m%s\033[00m' % text) sys.exit(returncode) def parse(code): ''' Parse the .conf file and return it as a tree @param code:str The .conf file content to parse @return :list<↑|str> The root node in the tree ''' stack, stackptr = [], -1 comment, escape, quote, buf = False, False, None, None col, char, line = 0, 0, 1 for c in code: if comment: if c in '\n\r\f': comment = False elif escape: escape = False if c == 'a': buf += '\a' elif c == 'b': buf += chr(8) elif c == 'e': buf += '\033' elif c == 'f': buf += '\f' elif c == 'n': buf += '\n' elif c == 'r': buf += '\r' elif c == 't': buf += '\t' elif c == 'v': buf += chr(11) elif c == '0': buf += '\0' else: buf += c elif c == quote: quote = None elif (c in ';#') and (quote is None): if buf is not None: stack[stackptr].append(buf) buf = None comment = True elif (c == '(') and (quote is None): if buf is not None: stack[stackptr].append(buf) buf = None stackptr += 1 if stackptr == len(stack): stack.append([]) else: stack[stackptr] = [] elif (c == ')') and (quote is None): if buf is not None: stack[stackptr].append(buf) buf = None if stackptr == 0: return stack[0] stackptr -= 1 stack[stackptr].append(stack[stackptr + 1]) elif (c in ' \t\n\r\f') and (quote is None): if buf is not None: stack[stackptr].append(buf) buf = None else: if buf is None: buf = '' if c == '\\': escape = True elif (c in '\'\"') and (quote is None): quote = c else: buf += c if c == '\t': col |= 7 col += 1 char += 1 if c in '\n\r\f': line += 1 col = 0 char = 0 abort('premature end of file') # Parse .conf file in tree conf = parse(conf) # Parse .conf file tree if isinstance(conf[0], str) and not conf[0].startswith(':'): conf = conf[1:] # Available outputs screens = list_screens('drm' if ttymode else 'randr') # Map of composed function composed = {} # List of adjustments adjustments = [] ## For the following functions, the type of args is the type of args ## after it has been evaluated, they may be functions inside that ## break this until the functions have been evaluated. The type for ## args before evaluation is always list<↑|str>. def _monitors(mods, args): ''' Select monitors to use by index @param mods:[] Not used @param args:list Indices of outputs, : or : or 'nil', empty for all ''' args = evaluate_tree(args, True) print('Selected monitors: %s' % ', '.join(args)) def _crtc(mods, args): ''' Find monitors by name @param mods:[]|[str] Optionally the number of monitors to list @param args:list Names of outputs @return :list : encoding of found monitors ''' args = evaluate_tree(args, False) limit = None if len(mods) == 0 else int(mods[0]) found = [] for name in args: found += screens.find_by_name(name) found = ['%i:%i' % (output.screen, output.crtc) for output in found] if limit is not None: found += ['nil'] * limit found = found[:limit] return found def _size(mods, args): ''' Find monitors by physical size @param mods:[]|[str] Optionally the number of monitors to list @param args:[str, str]|list<[str, str]> Width–height-pairs, in millimetres @return :list : encoding of found monitors ''' args = evaluate_tree(args, True) limit = None if len(mods) == 0 else int(mods[0]) found = [] for (width, height) in [args] if len(args) == 2 else args: found += screens.find_by_size(int(width), int(height)) found = ['%i:%i' % (output.screen, output.crtc) for output in found] if limit is not None: found += ['nil'] * limit found = found[:limit] return found def _edid(mods, args): ''' Find monitors by extended display identification data @param mods:[]|[str] Optionally the number of monitors to list @param args:list EDID of outputs' monitors @return :list : encoding of found monitors ''' args = evaluate_tree(args, False) limit = None if len(mods) == 0 else int(mods[0]) found = [] for edid in args: found += screens.find_by_edid(edid) found = ['%i:%i' % (output.screen, output.crtc) for output in found] if limit is not None: found += ['nil'] * limit found = found[:limit] return found def _coordinates(mods, args): ''' Specify geographical location by coordinates @param mods:[]|[str] Continuously updates if 'cont' is included @param args:[str, str] The latitude and longitude (northwards and eastwards in degrees) ''' args = evaluate_tree(args, True) if 'cont' in mods: print('Selected continuous location tracking: %s' % repr(args)) else: print('Selected location: %f, %f' % (float(args[0]), float(args[1]))) def _parse(mods, args): ''' Parse a string into a tree @param mods:[] Not used @param args:[str] The string @return :list<↑|str> The tree ''' args = evaluate_tree(args, True) if len(args) == 1: return evaluate_tree(parse(args[0])) else: return [evaluate_tree(parse(arg)) for arg in args] def _read(mods, args): ''' Read an external file @param mods:[] Not used @param args:[str] The file @return :[str] The content of the file ''' args = evaluate_tree(args, False) rc = [] for arg in args: with open(arg, 'r') as file: rc.append(file.read().rstrip()) return rc def _spawn(mods, args): ''' Run an external command @param mods:[] Not used @param args:list The command @return :[str] The output of the command ''' args = evaluate_tree(args, False) from subprocess import Popen, PIPE return [subprocess.Popen(args, stdout = PIPE, stderr = sys.stderr).proc.communicate()[0]] def _include(mods, args): ''' Include external files @param mods:[] Not used @param args:list The files @return :list<↑|str> The content of the file as a tree concatenated ''' args = evaluate_tree(args, False) rc = [] for arg in args: with open(arg, 'r') as file: rc.append(file.read().rstrip()) if len(rc) == 1: return evaluate_tree(parse(rc[0])) else: return [evaluate_tree(parse(content)) for content in rc] def _source(mods, args): ''' Load external Python files @param mods:[] Not used @param args:list The files ''' args = evaluate_tree(args, True) pass # TODO (source) def _eval(mods, args): ''' Evaluate strings of Python code @param mods:[] Not used @param args:list<↑|str> The strings @return :list<↑|str> The evaluated valus ''' args = evaluate_tree(args, False) def eval_(arg): if isinstance(arg, str): return str(eval(arg, globals())) else: return [eval_(arg) for arg in args] return eval_(args) def _timepoints(mods, args): ''' Select time points when different settings are applied, continuous transition betweem them will be used. This are not used by default, be can be enabled in the next section. @param mods:[] Not used @param args:list The time points in 24-hour colour formatted as H, H:M or H:M:S, leading zeroes are allowed ''' args = evaluate_tree(args, True) print('Selected time points: %s' % ', '.join(args)) def _points(mods, args): ''' Select method for calculating the time the different settings are (fully) applied @param mods:[] Not used @param args:list Either 'solar' optionally followed by solar elevation in degrees, 'time' or 'constant' ''' args = evaluate_tree(args, True) print('Selected points: %s' % ', '.join(args)) def _dayness(mods, args): ''' Configure so that adjustments only need day and night settings, time settings application points are reduced to different degrees of these settings @param mods:[] Not used @param args:list Mapping from points (implied by index) to dayness degrees ''' args = evaluate_tree(args, True) print('Selected dayness: %s' % ', '.join(args)) def _method(mods, args): ''' Select colour curve applying method @param mods:[] Not used @param args:list The methods to use: 'randr', 'vidmode', 'print' ''' args = evaluate_tree(args, True) if ttymode: args = ['drm' if arg in ['randr', 'vidmode'] else arg for arg in args] print('Selected methods: %s' % ', '.join(args)) def _transfrom(mods, args): ''' Let Blueshift transition from the currently applied settings when it starts @param mods:[] Not used @param args:list Method for (optionally) each monitor: 'randr', 'vidmode' or 'nil' ''' args = evaluate_tree(args, True) if ttymode: args = ['drm' if arg in ['randr', 'vidmode'] else arg for arg in args] print('Selected transition from method: %s' % ', '.join(args)) def _compose(mods, args): ''' Compose a function @param mods:[] Not used @param args:list> The name of the function follow by the wrapped function and parameters wrappers: 'as-is' for identity, 'yes' for tautology, 'no' for contradiction, and functions names for functions, or a composition ''' args = evaluate_tree(args, False) new_function = args[0] old_function = composed[args[1]] if args[1] in composed else eval(args[1]) arguments = [[arg] if isinstance(arg, str) else arg for arg in args[2:]] wrapping = [] for arg in arguments: composite = lambda x : x() for f_ in arg: if f_ == 'as-is': continue elif f_ == 'yes': composite = lambda x : True elif f_ == 'no': composite = lambda x : False else: composite_ = composite f = composed[f_] if f_ in composed else eval(f_) composite = lambda x : f(composite_(x)) wrapping.append(composite) def F_new(*args): arg_ptr = -1 def arg_itr(): nonlocal arg_ptr arg_ptr += 1 return args[arg_ptr] evaled = [] for wrap in wrapping: evaled.append(wrap(arg_itr)) return old_function(*evaled) composed[new_function] = F_new class Negative: ''' Negative image adjustment ''' def __init__(self): self.monitors = [(False, False, False, False, False, False)] def __call__(self, monitor, _timepoint, alpha): negative(*(self.monitors[monitor % len(self.monitors)][3 if alpha == 0 else 0:][:3])) def _negative(mods, args): ''' Add negative image adjustment @param mods:list 'red', 'green' and 'blue' for restricting to those colour curves, and 'default' for using before and after Blueshift is running @param args:list<[str, str, str]|str> 'yes' and 'no' or 3–tuple for red, green and blue, for each monitor (or all of them) on whether to apply negative image, 'yes' implied for all monitors if empty ''' red = 'red' in mods green = 'green' in mods blue = 'blue' in mods default = 'default' in mods args = evaluate_tree(args, True) prev = None if len(adjustments) == 0 else adjustments[-1] if (prev is None) or not isinstance(prev, Negative): prev = Negative() adjustments.append(prev) if not len(prev.monitors) == len(args): prev.monitors *= len(args) args *= len(prev.monitors) // len(args) if not any(red, green, blue): red = green = blue = True for monitor in range(len(args)): adj = args[monitor] if isinstance(adj, str): adj = [adj, adj, adj] adj = [(a == 'yes') && p for a, p in zip(adj, (red, green, blue))] adj = ([False] * 3 if default else []) + adj + ([] if default else [False] * 3) adj = [a ^ b for a, b in zip(adj, prev.monitors[monitor])] prev.monitors[monitor] = tuple(adj) class RGBInvert: ''' Colour inversion adjustment in sRBG ''' def __init__(self): self.monitors = [(False, False, False, False, False, False)] def __call__(self, monitor, _timepoint, alpha): rgb_invert(*(self.monitors[monitor % len(self.monitors)][3 if alpha == 0 else 0:][:3])) class CIEInvert: ''' Colour inversion adjustment in CIE xyY ''' def __init__(self): self.monitors = [(False, False, False, False, False, False)] def __call__(self, monitor, _timepoint, alpha): cie_invert(*(self.monitors[monitor % len(self.monitors)][3 if alpha == 0 else 0:][:3])) def _invert(mods, args): ''' Add colour inversion adjustment @param mods:list 'red', 'green' and 'blue' for restricting to those colour curves, 'cie' for using CIE xyY and 'default' for using before and after Blueshift is running @param args:list<[str, str, str]|str> 'yes' and 'no' or 3–tuple for red, green and blue, for each monitor (or all of them) on whether to apply colour invertion, 'yes' implied for all monitors if empty ''' cie = 'cie' in mods red = 'red' in mods green = 'green' in mods blue = 'blue' in mods default = 'default' in mods args = evaluate_tree(args, True) prev = None if len(adjustments) == 0 else adjustments[-1] if (prev is None) or not isinstance(prev, CIEInvert if cie else RGBInvert): prev = CIEInvert() if cie else RGBInvert() adjustments.append(prev) if not len(prev.monitors) == len(args): prev.monitors *= len(args) args *= len(prev.monitors) // len(args) if not any(red, green, blue): red = green = blue = True for monitor in range(len(args)): adj = args[monitor] if isinstance(adj, str): adj = [adj, adj, adj] adj = [(a == 'yes') && p for a, p in zip(adj, (red, green, blue))] adj = ([False] * 3 if default else []) + adj + ([] if default else [False] * 3) adj = [a ^ b for a, b in zip(adj, prev.monitors[monitor])] prev.monitors[monitor] = tuple(adj) def _temperature(mods, args): ''' Add colour temperature adjustment @param mods:list 'cie' for using CIE xyY and 'default' for using before and after Blueshift is running @param args:list<[str]|list Temperature to apply all day long or depending on time, or either of those depending on monitor ''' args = evaluate_tree(args, True) pass # TODO (temperature) def _current(mods, args): ''' Add adjustments applied when Blueshift starts @param mods:[] Not used @param args:list Method used to get the current adjustments, options for all monitors: 'randr' for `randr_get`, 'vidmode' for `vidmode_get` or 'nil' for none ''' args = evaluate_tree(args, True) pass # TODO (current) class TimeDependent: ''' Time and monitor dependent adjustment with red, green and blue parameters @variable fid:str Function identifier @variable f:(red:¿V?, green:¿V?, blue:¿V?)→void Applying function @variable monitors:list> Red, green, blue values as applied and default, for each timepoint for each monitor ''' def __init__(self, fid, monitors): ''' Constructor @param fid:str Function identifier @param monitors:list> Red, green, blue values as applied and default, for each timepoint for each monitor ''' self.fid = fid self.monitors = monitors self.f = None def __call__(self, monitor, timepoint, alpha): ''' Apply adjustment @param monitor The monitor to adjust @param timepoint The timepoint @param alpha The degree to which the adjustment should be visible ''' mon = self.monitors[monitor % len(self.monitors)] rgb0_def0 = mon[(int(timepoint) + 0) % len(mon)] rgb1_def1 = mon[(int(timepoint) + 1) % len(mon)] rgb0 = [c * alpha + d * (1 - alpha) for c, d in zip(rgb0_def0[:3], rgb0_def0[3:])] rgb1 = [c * alpha + d * (1 - alpha) for c, d in zip(rgb1_def1[:3], rgb1_def1[3:])] talpha = timepoint % 1 self.f(*[c0 * (1 - talpha) + c1 * talpha for c0, c1 in zip(rgb0, rgb1)]) @staticmethod def parse(self, mods, args, d): ''' Parse configurations into a simple and evaluated format @param mods:list 'red', 'green' and 'blue' for restricting to those colour curves and 'default' for using before and after Blueshift is running @param args:list the adjustment at each time point (outer) for each monitor, |list<[str, str, str]>> optionally with individual colour curve control @param d:float? The default value @return args:list> Red, green, blue values as applied and default, for each timepoint for each monitor ''' args = [] red = 'red' in mods green = 'green' in mods blue = 'blue' in mods default = 'default' in mods args = evaluate_tree(args, True) if default: args_ = [args_] for arg in args_: if isinstance(arg, str): arg = [arg] if isinstance(arg[0], str): arg = [arg] arg = [[None if v == 'nil' else float(v) for v in (3 * a)[:3]] for a in arg] arg = [[a[0] if red else d, a[1] if green else d, a[2] if blue else d] for a in arg] arg = [a + [d, d, d] for a in arg] args.append(arg) return args def merge(self, addition, merger): ''' Merge in new adjustments @param addition:list> New adjustments @param merger:(float?, float?)→float? Subpixel value merger function ''' if not len(self.monitors) == len(addition): self.monitors *= len(addition) addition *= len(self.monitors) // len(addition) for i in range(len(self.monitors)): if not len(self.monitors[i]) == len(addition[i]): self.monitors[i] *= len(addition[i]) addition[i] *= len(self.monitors[i]) // len(addition[i]) for j in range(len(self.monitors[i])): self.monitors[i][j] = [merger(self.monitors[i][j][k], addition[i][j][k]) for k in range(6)] def _brightness(mods, args): ''' Add white point level adjustment @param mods:list 'red', 'green' and 'blue' for restricting to those colour curves, 'cie' for using CIE xyY and 'default' for using before and after Blueshift is running @param args:list the adjustment at each time point (outer) for each monitor, |list<[str, str, str]>> optionally with individual colour curve control ''' cie = 'cie' in mods args = TimeDependent.parse(mods, args, 1) prev = None if len(adjustments) == 0 else adjustments[-1] fid = 'brightness' + (':cie' if cie else '') if not (isinstance(prev, TimeDependent) and (prev.fid == fid)): f = cie_brightness if cie else rgb_brightness td = TimeDependent(fid, args) td.f = lambda *c : f(*c) adjustments.append(td) else: prev.merge(args, lambda a, b : a * b) def _contrast(mods, args): ''' Add black point–white point divergence level adjustment @param mods:list 'red', 'green' and 'blue' for restricting to those colour curves, 'cie' for using CIE xyY and 'default' for using before and after Blueshift is running @param args:list the adjustment at each time point (outer) for each monitor, |list<[str, str, str]>> optionally with individual colour curve control ''' cie = 'cie' in mods args = TimeDependent.parse(mods, args, 1) prev = None if len(adjustments) == 0 else adjustments[-1] fid = 'contrast' + (':cie' if cie else '') if not (isinstance(prev, TimeDependent) and (prev.fid == fid)): f = cie_contrast if cie else rgb_contrast td = TimeDependent(fid, args) td.f = lambda *c : f(*c) adjustments.append(td) else: prev.merge(args, lambda a, b : a * b) def _resolution(mods, args): ''' Add colour curve resolution adjustment @param mods:list 'red', 'green' and 'blue' for restricting to those colour curves and 'default' for using before and after Blueshift is running, and 'output' for on the output axis, and 'encoding' for on the encoding axis. @param args:list the adjustment at each time point (outer) for each monitor, |list<[str, str, str]>> optionally with individual colour curve control ''' args = evaluate_tree(args, True) pass # TODO (resolution) def _gamma(mods, args): ''' Add gamma correction adjustment @param mods:list 'red', 'green' and 'blue' for restricting to those colour curves and 'default' for using before and after Blueshift is running @param args:list the adjustment at each time point (outer) for each monitor, |list<[str, str, str]>> optionally with individual colour curve control ''' args = TimeDependent.parse(mods, args, 1) prev = None if len(adjustments) == 0 else adjustments[-1] fid = 'gamma' if not (isinstance(prev, TimeDependent) and (prev.fid == fid)): def f(c): clip() gamma(*c) td = TimeDependent(fid, args) td.f = lambda *c : f(c) adjustments.append(td) else: prev.merge(args, lambda a, b : a * b) def _pgamma(mods, args): ''' Add gamma correction adjustment without curve clipping @param mods:list 'red', 'green' and 'blue' for restricting to those colour curves and 'default' for using before and after Blueshift is running @param args:list the adjustment at each time point (outer) for each monitor, |list<[str, str, str]>> optionally with individual colour curve control ''' args = TimeDependent.parse(mods, args, 1) prev = None if len(adjustments) == 0 else adjustments[-1] fid = 'pgamma' if not (isinstance(prev, TimeDependent) and (prev.fid == fid)): td = TimeDependent(fid, args) td.f = lambda *c : gamma(*c) adjustments.append(td) else: prev.merge(args, lambda a, b : a * b) def _clip(mods, args): ''' Add curve clipping adjustment @param mods:list 'red', 'green' and 'blue' for restricting to those colour curves @param args:list<[str, str, str]|str> 'yes' and 'no' or 3–tuple for red, green and blue, for each monitor (or all of them) on whether to clip the curve, 'yes' implied for all monitors if empty ''' red = 'red' in mods green = 'green' in mods blue = 'blue' in mods args = evaluate_tree(args, True) if len(args) == 0: args = ['yes'] args = [[arg, arg, arg] if isinstance(arg, str) else arg for arg in args] args = [[a == 'yes' for a in arg] for arg in args] if red or green or blue: args = [[arg[0] and red, arg[1] and green, arg[2] and blue] for arg in args] adjustments.append(lambda monitor, _timepoint, _alpha : clip(*(args[monitor % len(args)]))) def _sigmoid(mods, args): ''' Add sigmoid curve cancellation adjustment @param mods:list 'red', 'green' and 'blue' for restricting to those colour curves and 'default' for using before and after Blueshift is running @param args:list the adjustment at each time point (outer) for each monitor, |list<[str, str, str]>> optionally with individual colour curve control; 'nil' for nothing ''' args = TimeDependent.parse(mods, args, 1) prev = None if len(adjustments) == 0 else adjustments[-1] fid = 'sigmoid' if not (isinstance(prev, TimeDependent) and (prev.fid == fid)): td = TimeDependent(fid, args) td.f = lambda *c : sigmoid(*c) adjustments.append(td) else: try: def merger(a, b): if a is None: return b if b is None: return a raise Exception() prev.merge(args, merger) except: td = TimeDependent(fid, args) td.f = lambda *c : sigmoid(*c) adjustments.append(td) def _limits(mods, args): ''' Add sigmoid curve cancellation adjustment @param mods:list red', 'green' and 'blue' for restricting to those colour curves, 'cie' for using CIE xyY and 'default' for using before and after Blueshift is running @param args:list| Add limitations all day long either [minimum, maximum], or [red minimum, red maximum, green minimum, green maximum, blue minimum, blue maximum], optionally list optionally for each monitor (all if just one specified) (outer/middle), |list> optionally at each time point (outer) ''' args = evaluate_tree(args, True) pass # TODO (limits) def _linearise(mods, args): ''' Add sRGB to linear RGB conversion adjustment @param mods:list 'red', 'green' and 'blue' for restricting to those colour curves @param args:list<[str, str, str]|str> 'yes' and 'no' or 3–tuple for red, green and blue, for each monitor (or all of them) on whether to convert the curve, 'yes' implied for all monitors if empty ''' red = 'red' in mods green = 'green' in mods blue = 'blue' in mods args = evaluate_tree(args, True) if len(args) == 0: args = ['yes'] args = [[arg, arg, arg] if isinstance(arg, str) else arg for arg in args] args = [[a == 'yes' for a in arg] for arg in args] if red or green or blue: args = [[arg[0] and red, arg[1] and green, arg[2] and blue] for arg in args] adjustments.append(lambda monitor, _timepoint, _alpha : linearise(*(args[monitor % len(args)]))) def _icc(mods, args): ''' Add adjustment by ICC profile @param mods:[]|[str] 'filter' or 'calib' (default) for when Blueshift is running and Blueshift is running but also before and after, respectively @param args:list> The ICC profile pathname for each time point (all day long if one), and optionally (inner) for each monitor. ''' args = evaluate_tree(args, False) pass # TODO (icc) def _manipulate(mods, args): ''' Add curve manipulation function adjustment @param mods:list red', 'green' and 'blue' for restricting to those colour curves, 'cie' for using CIE xyY and 'default' for using before and after Blueshift is running @param args:list<[str, str, str]|str> Function for each monitor (for all if just one specified), and optionally one per colour curve (red, green and blue) ''' red = 'red' in mods green = 'green' in mods blue = 'blue' in mods cie = 'cie' in mods args = evaluate_tree(args, False) args = [[arg, arg, arg] if isinstance(arg, str) else arg for arg in args] args = [[None if a == 'nil' else eval(a) for a in arg] for arg in args] if red or green or blue: args = [[arg[0] if red else None, arg[1] if green else None, arg[2] if blue else None] for arg in args] f = cie_manipulate if cie else manipulate adjustments.append(lambda monitor, _timepoint, _alpha : f(*(args[monitor % len(args)]))) # TODO default def _standardise(mods, args): ''' Add linear RGB to sRGB conversion adjustment @param mods:list 'red', 'green' and 'blue' for restricting to those colour curves @param args:list<[str, str, str]|str> 'yes' and 'no' or 3–tuple for red, green and blue, for each monitor (or all of them) on whether to convert the curve, 'yes' implied for all monitors if empty ''' red = 'red' in mods green = 'green' in mods blue = 'blue' in mods args = evaluate_tree(args, True) if len(args) == 0: args = ['yes'] args = [[arg, arg, arg] if isinstance(arg, str) else arg for arg in args] args = [[a == 'yes' for a in arg] for arg in args] if red or green or blue: args = [[arg[0] and red, arg[1] and green, arg[2] and blue] for arg in args] adjustments.append(lambda monitor, _timepoint, _alpha : standardise(*(args[monitor % len(args)]))) # Map function names to functions functions = { 'monitors' : _monitors , 'crtc' : _crtc , 'size' : _size , 'edid' : _edid , 'coordinates' : _coordinates , 'parse' : _parse , 'read' : _read , 'spawn' : _spawn , 'include' : _include , 'source' : _source , 'eval' : _eval , 'timepoints' : _timepoints , 'points' : _points , 'dayness' : _dayness , 'method' : _method , 'transfrom' : _transfrom , 'negative' : _negative , 'invert' : _invert , 'temperature' : _temperature , 'compose' : _compose , 'current' : _current , 'brightness' : _brightness , 'contrast' : _contrast , 'resolution' : _resolution , 'gamma' : _gamma , '\'gamma' : _pgamma , 'clip' : _clip , 'sigmoid' : _sigmoid , 'limits' : _limits , 'linearise' : _linearise , 'icc' : _icc , 'manipulate' : _manipulate , 'standardise' : _standardise } def evaluate_tree(elements, implied_functions = True): ''' Evaluate the tree @param elements:list<↑|str> Elements @param implied_functions:bool Whether to parse the first element as a function call ''' rc = [] if len(elements) == 0: return rc if elements[0] == '.': elements = elements[1:] else: if isinstance(elements[0], str): cand = elements[0].split(':')[0] if cand in functions.keys(): elements = [':' + elements[0], elements[1:]] i, n = 0, len(elements) while i < n: element = elements[i] if isinstance(element, str) and element.startswith(':'): if i + 1 < len(elements): args = elements[i + 1] i += 1 if isinstance(args, str): args = [args] element = element[1:].split(':') ret = functions[element[0]](element[1:], args) if ret is not None: rc += ret else: if not isinstance(element, str): element = evaluate_tree(element, implied_functions) if element is not None: rc.append(element) i += 1 return rc # Evaluate tree evaluate_tree(conf, True) conf = None