diff options
Diffstat (limited to 'src/aux.py')
-rw-r--r-- | src/aux.py | 56 |
1 files changed, 56 insertions, 0 deletions
diff --git a/src/aux.py b/src/aux.py new file mode 100644 index 0000000..ec94549 --- /dev/null +++ b/src/aux.py @@ -0,0 +1,56 @@ +#!/usr/bin/env python3 + +# Copyright © 2014 Mattias Andrée (maandree@member.fsf.org) +# +# This program is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as published by +# the Free Software Foundation, either version 3 of the License, or +# (at your option) any later version. +# +# This program is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with this program. If not, see <http://www.gnu.org/licenses/>. + +from curve import * + + +def translate_to_integers(): + ''' + Translate the curves from float to integer + + @param :(list<int>, list<int>, list<int>) The red curve, the green curve and, + the blue curve mapped to integers + ''' + R_curve, G_curve, B_curve = [0] * i_size, [0] * i_size, [0] * i_size + for i_curve, o_curve in ((r_curve, R_curve), (g_curve, G_curve), (b_curve, B_curve)): + for i in range(i_size): + o_curve[i] = int(i_curve[i] * (o_size - 1) + 0.5) + if clip_result: + o_curve[i] = min(max(0, o_curve[i]), (o_size - 1)) + return (R_curve, G_curve, B_curve) + + +def ramps_to_function(r, g, b): + ''' + Convert a three colour curves to a function that applies those adjustments + + @param r:int The red colour curves as [0, 65535] integers + @param g:int The green colour curves as [0, 65535] integers + @param b:int The blue colour curves as [0, 65535] integers + @return :()→void Function to invoke to apply the curves that the parameters [r, g and b] represents + ''' + r = [y / 65535 for y in r] + g = [y / 65535 for y in g] + b = [y / 65535 for y in b] + def fcurve(R_curve, G_curve, B_curve): + for curve, cur in curves(R_curve, G_curve, B_curve): + for i in range(i_size): + y = int(curve[i] * (len(cur) - 1) + 0.5) + y = min(max(0, y), len(cur) - 1) + curve[i] = cur[y] + return lambda : fcurve(r, g, b) + |