summaryrefslogtreecommitdiffstats
path: root/test
diff options
context:
space:
mode:
authorMattias Andrée <maandree@operamail.com>2014-04-06 04:00:08 +0200
committerMattias Andrée <maandree@operamail.com>2014-04-06 04:00:08 +0200
commit21aa5d270d3705661cda7d4fac4720057cff5b72 (patch)
treee4c3f4f71c029a555f5df54ca73e61206881a37f /test
parentoptimisation to cubic interpolation: remove a basis function by doing an value translation (diff)
downloadblueshift-21aa5d270d3705661cda7d4fac4720057cff5b72.tar.gz
blueshift-21aa5d270d3705661cda7d4fac4720057cff5b72.tar.bz2
blueshift-21aa5d270d3705661cda7d4fac4720057cff5b72.tar.xz
add test implemention of monotone cubic interpolation
Signed-off-by: Mattias Andrée <maandree@operamail.com>
Diffstat (limited to 'test')
-rwxr-xr-xtest/monotone_cubic_interpolation140
1 files changed, 140 insertions, 0 deletions
diff --git a/test/monotone_cubic_interpolation b/test/monotone_cubic_interpolation
new file mode 100755
index 0000000..4ade1dc
--- /dev/null
+++ b/test/monotone_cubic_interpolation
@@ -0,0 +1,140 @@
+#!/usr/bin/env python3
+# -*- python -*-
+
+# Copyright © 2014 Mattias Andrée (maandree@member.fsf.org)
+#
+# This program is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation, either version 3 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+
+
+# Test of monotone cubic interpolation
+# using the Fritsch–Carlson method.
+# Does not overshoot, but regular
+# cubic interpolation with linear
+# replace for overshots is better.
+
+
+# Load matplotlib.pyplot,
+# it can take some time so
+# print information about it.
+print('Loading matplotlib.pyplot...')
+import matplotlib.pyplot as plot
+print('Done loading matplotlib.pyplot')
+
+# Modules used for input data generation
+from math import *
+from random import *
+
+
+def main():
+ # Create a page with graphs
+ fig = plot.figure()
+
+ # Add graphs
+ add_graph(fig, 221, [i / 15 for i in range(16)])
+ add_graph(fig, 222, [sin(6 * i / 15) for i in range(16)])
+ add_graph(fig, 223, [(i / 15) ** 0.5 for i in range(16)])
+ #add_graph(fig, 221, [random() for i in range(16)])
+ #add_graph(fig, 222, [random() for i in range(16)])
+ #add_graph(fig, 223, [random() for i in range(16)])
+ #add_graph(fig, 224, [random() for i in range(16)])
+ #add_graph(fig, 224, [(-1) ** (i // 2) for i in range(16)])
+ add_graph(fig, 224, [i / 15 * (-1) ** (i // 2) for i in range(16)])
+
+ # Show graphs
+ plot.show()
+
+def add_graph(fig, graph_pos, input_values):
+ '''
+ Add a graph
+
+ @param fig:Figure The page to which to add the graph
+ @param graph_pos:int Where to place the graph
+ @param input_values:list<float> The input values for each point
+ '''
+ # Interpolate data
+ output_values = interpolate(input_values)
+ # Number of input points
+ n = len(input_values)
+ # Number of output points
+ m = len(output_values)
+ # Create graph
+ graph = fig.add_subplot(graph_pos)
+ # Plot interpolated data
+ graph.plot([i / (m - 1) for i in range(m)], output_values, 'b-')
+ # Plot input data
+ graph.plot([i / (n - 1) for i in range(n)], input_values, 'ro')
+
+
+def interpolate(small, tension = 0):
+ '''
+ Interpolate data
+
+ @param small:list<float> The input values for each point
+ @param tension:float A [0, 1] value of the interpolation tension
+ @return :list<float> The values for each point in a scaled up version
+ '''
+ large = [None] * len(small) ** 2
+ small_, large_ = len(small) - 1, len(large) - 1
+ # Basis functions
+ h00 = lambda t : (1 + 2 * t) * (1 - t) ** 2
+ h10 = lambda t : t * (1 - t) ** 2
+ h01 = lambda t : t ** 2 * (3 - 2 * t)
+ h11 = lambda t : t ** 2 * (t - 1)
+ # Tension coefficent
+ c_ = 1 - tension
+ ## Interpolant selection
+ # Compute the slopes of the secant
+ # lines between successive points
+ ds = [small[i + 1] - small[i] for i in range(small_)]
+ # Initialize the tangents at every
+ # data point as the average of the secants
+ ms = [ds[0]] + [(ds[i - 1] + ds[i]) / 2 for i in range(1, small_)] + [ds[small_ - 1]]
+ βlast = 0
+ for i in range(small_):
+ if ds[i] == 0:
+ # Two successive values are equal, ms[i],
+ # must be zero to preserve monotonicity,
+ # no idea to do further work on them.
+ ms[i], βlast = 0, -1
+ continue
+ # Look for local extremums
+ α, β = ms[i] / ds[i], ms[i + 1] / ds[i]
+ if (α < 0) or (βlast < 0):
+ # Local extremum found,
+ # ensure piecewise monotonicity
+ ms[i], β = 0, -1
+ elif α ** 2 + β ** 2 > 9:
+ # Otherwise, prevent overshoot and ensure
+ # monotonicity by restricting the (α, β)
+ # vector to a circle of radius 3.
+ τ = 3 / (α ** 2 + β ** 2) ** 0.5
+ ms[i], ms[i + 1] = τ * α * ds[i], τ * β * ds[i]
+ βlast = β
+ ## Interpolation
+ for i in range(len(large)):
+ # Scaling
+ j = i * small_ / large_
+ # Floor, weight, ceiling
+ j, w, k = int(j), j % 1, min(int(j) + 1, small_)
+ # Points
+ pj, pk = small[j], small[k]
+ # Tangents
+ mj, mk = c_ * ms[j], c_ * ms[k]
+ # Interpolation
+ large[i] = h00(w) * pj + h10(w) * mj + h01(w) * pk + h11(w) * mk
+ return large
+
+# Plot interpolation
+main()
+